Name	Index No:

233/1 CHEMISTRY PAPER 1 THEORY TIME: 2 HOURS

CHEMISTRY PAPER 1

Kenya Certificate of Secondary Education (K.C.S.E.)

233/1 Chemistry Paper 1 2 Hours

INSTRUCTIONS TO CANDIDATES

- Write your **name** and **index number** in the spaces provided above ☐ **Sign** and write the **date** of examination in the spaces provided.
- Answer *all* the questions in the spaces provided.
- Mathematical table and silent electronic calculators may be used. □ All working **must** be clearly shown where necessary.

FOR EXAMINERS USE ONLY

Question	Maximum score	Candidate's	
		score	
1-30	80		

This paper consists of 11printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1.	State two reasons why most apparatus in the laboratory are made of glass	(2mks)
2.	The following is an organic compound represented as CH ₃ CH ₂ COOCH ₂ CH ₃ (i) Name the organic acid and alkanol used in making the compound	(2mks)
	(ii) Name the organic compound and the gas formed when the alkanol in (i) above with Potassium	is reacted (1mk)
3.	Use the information below to answer the question that follows	
	$Ca_{(s)} + \frac{1}{2} O_{2(g)}$ \longrightarrow (s) CaO ; $\Box H=-635 \text{KJmol}^-$	
$C_{(s)}$	$+ O_{2(g)}$; $\square H=$ $CO_{2(g)}$ -394KJmol	
	$Ca_{(s)} + C_{(s)} + {}^{3}/{}^{2}O^{2(g)}$ CaCO _{3(s)} \Box H= -1207 KJmol ⁻	
	Calculate the enthalpy change for the reaction	
4.	(a) What is the role of the following parts during fractional distillation of a mixtu and ethanol	
	(i) Fractionating column	(1mk)
		(1mk)

	(b) State any one application of fractional distillation process	(1mk)
5.	Name the process which takes place when: (i) Iodine changes directly from solid to gas	(1mk)
	(ii) $Fe^{2+}_{(aq)}$ changes to $Fe^{3+}_{(aq)}$	(1mk)
	(iii) White sugar changes to black solid when mixed with excess concentrated sulp	
6.	The melting point of phosphorous trichloride is -91°C while that of sodium chlor In terms of structure and bonding. Explain the difference in their melting point	ide is 801°C. (3mks)
		• • • • • • • • • • • • • • • • • • • •
7.	(a) Name a suitable drying agent to be used to dry chlorine gas	(1mk)
	(b) Chlorine reacts with red hot powder to give iron (III) chloride but not iron (II) Explain?	(1mk)
	(c) Sodium hydroxide reacts with chlorine to form bleaching powder. Write a balar for the reaction	nced equation (1mk)
8.	The electronic arrangement of elements are represented by letters A to D are as for A:2.8.6 B:2.8.2 C:2,8,1 D2:8.8	ollows
	(a) Select the element which forms (i)Double charged cation	(1mk)
 (ii) <i>A</i>	A soluble carbonate.	(1mk)
()		`
	(b) Which element has the shortest atomic radius?	(1mk)
9.	Describe how a sample of Lead (II) chloride can be prepared using the following	
	piled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi Mob: 073457929	
E-m	ail: infosnkenya@gmail.com ORDER ANSWERS ONLINE at www.schoolsnetkenya.co	<u>om</u>

	nitric (V) acid; dilute hydrochloric acid and lead carbonate	(3mks)
0.	A radioactive element of mass 50g has a half-life of 10 seconds (a) Sketch a graph of mass against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies with times against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies against time to show how the element mass varies aga	me (2mks)
	Time (sec) (b) Give one use of radioactive in industries	(1mk)
1.	State and explain one disadvantage of using hard water in boilers	(2mks)
2.	Hydrogen sulphide gas was passed through a solution of iron(III) chloride (i) State and explain the observations made (2)	mks)
	(ii) Write an ionic equation for the reaction taking place in (i) above	(1mk)

and answer the questions that follow

13.

The apparatus below was set up to show the catalytic oxidation of ammonia. Study the diagram

(i) Write an equation for the reaction that takes place in the gas jar	(1mk)
(ii) What is the role of hot nichrome wire?	(1mk)
(iii) Write the formula of the complex ion formed when excess ammonia through a solution containing Zn^{2+} ions.	
14. A solution of silver nitrate was put in a container made of metal Q for 1 day	. Given that:
$Q_{2+(aq)+2e-}Q_{(s)}$ =: E_{θ} =0.130v	
$Ag^{+}_{(aq)}+e Ag_{(s)}$ \longrightarrow $:E^{\theta}=+0.80v$	
Determine whether or not a reaction occurred between silver nitrate and metal	1 Q (2mks)
15. The table below shows the solubility of salt at various temperatures	

Temperature	Solubility g/100g of water
0	36
40	30
80	25
110	20

What would happen if a sample of a saturated solution of the salt 40°C is heated to 80°C?

Explain (2mks)

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | **Mob: 0734579299 E-mail:** infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

16.	The equation given below represents a redox reaction	•••••
	$Mg(s)+2HCl(aq) \longrightarrow MgCl_{2(aq)}+H_{2(g)}$	
	(i) Write the equation of the reduction process	(1mk)
	(ii) Which substances is oxidized?	(1mk)
	(ii) Which substances is oxidized?	` ,
17.	When a current of 1.5 amperes was passed through cell containing M ²⁺ ions minutes the mass of the cathode increased by 0.26g. (1F=96500C) (i) Calculate the quantity of electricity used	
		` ,
	(ii) Determined the relative atomic mass of metal M	(2mks)
18.	State any two differences between luminous and non luminous flames	(2mkg)
18.	State any two differences between luminous and non-luminous flames	(2mks)
19.	(a) State Graham's law of diffusion	(1mk)
	(b) The molar masses of gas U and V are 16.0 and 44.0 respectively. If the U through the porons materials is $12\text{cm}^{3\text{-}1}$. Calculate the rate of diffusion of same materials	
20.	The set up below was used to collect a dry sample of a gas	

	Give two reasons why the set-up cannot be used to collect carbon (IV) oxide gas	(2mks)
21.	Dilute sulphuric acid does not react fully with calcium carbonate while dilute he reacts fully with calcium carbonate liberating carbon (IV) oxide. Explain	ydrochloric acid (2mks)
22.	On complete combustion of 0.5g of a hydro carbon; 1.257g of carbon (IV) oxion water were produced. If the relative molecular mass of the hydrocarbon is 84, demolecular formula ($C=12, H=1, O=16$)	de and 0.514g of
21. (a) W	The conversion of SO_2 to SO_3 in the contact process is shown by the equation $2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)} \square H = -197KJ$ What would be the effect of? (i) Increasing the concentration of Oxygen	(1mk)
		•••••
	(ii) Increasing the temperature	(1mk)
(b) W	Vrite an equation for the sulphuric (VI) acid from Oleum	(1mk)
	oiled & distributed ail: infosnkenya@ Mob: 07345792	99

24.	Sulphur burns in air to form sulpur (IV) oxide. A simple energy level energy lever reaction is given below. Study the diagram and answer the questions that follows	
$\begin{array}{c} \Box H_1 \\ S_{(g)} + \end{array}$	O _{2(g)} $\frac{\hat{\mathbf{M}}}{\hat{\mathbf{M}}}$	
\Box H ₂ \Box H ₃		
□113	$SO_{2(g)}$	
	Reaction co-ordinate	
	(a) What do the following represents? $\Box H_1$ and $\Box H_3$	(2mks)
		•••••
	(b) Write an expression for □H ₃ in terms of □H ₁ and □H ₂	(1mk)
25.	Given the reaction below	
	$Zn(s) + 2HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$	(11-)
	State how the following factors affect the rate of reaction giving explanation	(1mk)
		•••••
	(a) Using Zinc powder instead of granules	(1mk)
	(b) Heating the reactants	(1mk)
		•••••
26.	The flow chart below shows steps used in the extraction of zinc from one of its	ores

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Mob: 0734579299 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

(a) Name the process that is used in step 2 to concentrated			(1mk)
	(b) Write an equation for the reaction which takes place in step 3		(1mk)
Name	e one use of zinc other galvanizing	(1mk)	(c
27.	The set up below used to obtain a sample of iron		

			(a)	Identify the gas
collected	(½ mk)			
	is made on the excess iro	on (III) oxide?		(½ mk)
(c) Write equations fo	r the two reactions that t	take place in the combustic	on tube	(2mks)

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Mob: 0734579299 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

20	7D1 (1.1 1 1	1 1011	1 6	1
28.	The table bel	ow shows PH	values of some	e solutions

Solution PH values	A 13	B 7	C 1	D 6.5	-						
(a) What sol				1	」 Magne	sium r	netal?				(1mk)
•••••		_			_						` '
(b) Which so	lution is	likelv	to be th	nat of l	Lemon	iuice?)				(1mk)
											,
(c) Which so	lution fo	orms co	omplex	ions v	with zin	c (II) d	oxide?				(1mk)
			-								` ′
precipitate w	as forme	ed. On	additio	n of m	nore aqu						
orecipitate we dentify the same a) Light blu	as forme substance e precipi	ed. On es resp tate	additioi onsible	n of m for th	nore aqu ne:	ueous a	ammon	nia a dee	p blue so		s formed. (1mk)
precipitate was dentify the same (a) Light blue	as forme substance e precipi	ed. On es resp itate	additioi onsible	n of m for th	nore aqu ne:	ueous a	ammon	nia a dee	p blue so	olution was	s formed. (1mk)
precipitate w Identify the s (a) Light blu (b) Deep bla	as forme substance e precipi	ed. On es resp itate	addition onsible	n of m for th	nore aqu	ueous a	ammon	nia a dee	p blue so	olution was	(1mk) (1mk)
dentify the same and the same a	as forme substance e precipi	ed. On es resp itate	addition onsible	n of m for th	nore aqu	ueous a	ammon	nia a dee	p blue so	olution was	(1mk) (1mk)
precipitate w Identify the s (a) Light blu (b) Deep blu	as forme substance e precipi	ed. On es resp itate on	addition onsible	n of m for th	nore aqu	ueous a	ammon	nia a dee	p blue so	olution was	(1mk) (1mk) (1mk)
crecipitate widentify the state of the state	as forme substance e precipi	ed. On es resp itate on	addition onsible	n of m for th	nore aqu	ueous a	ammon	nia a dee	p blue so	ments in p	(1mk) (1mk) (1mk)
(b) Deep bl	as forme substance e precipi	ed. On es resp itate on	addition onsible	n of m for th	nore aqu	ueous a	ammon	nia a dee	p blue so	ments in p	(1mk) (1mk) (1mk)