FORM 4 PHYSICS

NAME: \qquad ADM:. \qquad DATE: \qquad

1. Some students wish to determine the focal length of a convex lens of thickness 0.6 cm using an optical pin and a plane mirror. Figure 6 shows the experimental set up when there is no parallax between the pin and the image.

Fig. 1
Determine the focal length of the lens
(2 marks)
(b) Figure 2 shows an object O placed in front of a diverging lens whose principal focus is F .

On the diagram, draw rays diagram to locate the image formed.
(3marks)
(c) A lens forms an image four times the size of an object on a screen. The distance between the object and the screen .is 100 cm when the image is sharply focused.
i) State with reason what type of lens is used. 1 mk
ii) Calculate the focal length of the lens

3 mks
2. The figure below shows a stone of mass 450 g rotated in a vertical circle at 3 revolutions per second. If the string has a length of 1.5 m , determine:

B
(i) The linear velocity
(3mks)
(ii) The tension of the string at position \mathbf{A}
b) On the same diagram indicate the path that the stone will follow if the string snaps at point B (1 Mk)
(c) A stone is whirled with uniform speed in horizontal circle having radius of 10 cm . It takes the stone 10 seconds to describe an arc of length 4 cm . Determine:
(i) The angular velocity ω
(ii) The period \mathbf{T}
(3mks)
3. a) State Archimede's principle.
b) The figure below shows a cubic block of sides 4 cm and density $800 \mathrm{~kg} / \mathrm{m}^{3}$ attached to the base of water by means of an inextensible thread. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and density of water as $1000 \mathrm{~kg} / \mathrm{m}^{3}$)

Determine;
i) The weight of the block.
ii) Upthrust on the block.
iii) Tension in the thread.
4. A 180 w heater is immersed in a copper calorimeter of mass 100 g containing 200 g of alcohol. When the heater is switch on for 36 seconds the temperature of the calorimeter and its contents raises by $12^{\circ} \mathrm{C}$. Determine the specific heat capacity of alcohol (Take specific heat capacity of copper $=400 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$).
(3mks
5. A bubble of air rising from the bottom of a bond doubles its volume just as it reaches the surface of the pond. Explain this observation.
6. The figure below shows a capacitor network setup.

Calculate the charge stored by the 1.5μ. F capacitor.
(3mks)
7. A box of mass 300 kg is pulled along an inclined plane by a force of 2000 N as show in figure 6

Fig 6

Determine the efficiency of the inclined plane.
8. State one importance of anomalous expansion of water.
9. Figure 15 below shows graphs of two objects A and B of the same mass dropped from the same height. Object A landed on a foam mattress while B landed on a concrete floor

(i) State which object had a higher force of impact.
(1mk)
(ii) What does the area under each curve represent
10. (i) What is the difference between stationary and progressive waves
(ii) State two distinctions between the way sound waves and electromagnetic waves are transmitted.
(2mks)

