Name: \qquad
\qquad

Class: \qquad Date: \qquad
233/3

CHEMISTRY

PAPER 3
FORM III

END TERM 2 EXAMS

Time: 2 hours

233/3

CHEMISTRY

FORM III

INSTRUCTIONS TO THE CANDIDATES:-

- Write your name and admission number on the spaces provided.
- Answer all the questions in the spaces provided.
- Mathematical tables and electronic used calculators may be
- All working MUST be clearly shown where necessary.

Question	Maximum score	Candidate's score
1	20	

1. You are provided with:

- \quad Solution A - containing 21.2g per litre of anhydrous sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}\right)$
- Solution B - Nitric (V) acid solution
- Solution C - metal hydroxide $\mathrm{M}(\mathrm{OH})_{\mathrm{x}}$

Procedure 1

i) Fill the burette with solution B
ii) Using a pipette, transfer $25 \mathrm{~cm}^{3}$ of solution A into a clean conical flask and add 1-2 drops of methyl orange indicator.
iii) Titrate with solution B from burette.
iv) Repeat the titration to obtain accurate results and record the data in the table below.

Titre	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution B used $\left(\mathrm{cm}^{3}\right)$			

a) Find the average volume of solution B used.
(1 mark)
b) Given that the equation for the reaction is
$\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}+\mathrm{HNO}_{3(\mathrm{aq})} \quad \mathrm{NaNO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$
Calculate;
(i) The number of moles of sodium carbonate in $25 \mathrm{~cm}^{3}$ of solution A (3 marks)
(ii) The number of moles of the acid in the titre volume obtained.
c) Hence find the molarity of nitric (V) acid solution B.

Procedure II

i) Pipette $25 \mathrm{~cm}^{3}$ of solution C into a clean conical flask.
ii) Add 1-2 drops of methyl orange indicator.
iii) Titrate with solution b.
iv) Repeat the titration to obtain accurate results and fill the table below.

Table II

Titre	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution B used $\left(\mathrm{cm}^{3}\right)$			

a) Find the average titre volume of solution B used.
(1 mark)
b) Calculate;
i) The number of moles of solution B used in the reacting volume. (1 mark)
ii) The number of moles of solution C in $25 \mathrm{~cm}^{3}$ of the the solution.
c) Determine the equation for the reaction between the hydroxide $\mathrm{M}(\mathrm{OH})_{\mathrm{x}}$ and nitric (V) acid.
d) What is the value of x in $\mathrm{M}(\mathrm{OH})_{x}$?
(1 mark)

Confidential

Each candidate requires;
\checkmark About $100 \mathrm{~cm}_{3}$ of Solution A containing 21.2 g per litre of anhydrous sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}\right.$.
\checkmark About $150 \mathrm{~cm}_{3}$ of 0.3 M Nitric (V) acid solution B
\checkmark About $100 \mathrm{~cm}^{3}$ of 0.2 M sodium hydroxide solution C .
$\checkmark 50 \mathrm{~cm}^{3}$ burette
$\checkmark 25 \mathrm{~cm}^{3}$ pipette
\checkmark A clamp, boss and stand
\checkmark Methyl range indicator
$\checkmark 3$ conical flasks
\checkmark White tile.

