Name:	Adm No
Class:	Date:
233/3	
CHEMISTRY	
PAPER 3	
FORM III	
END TERM 2 EXAMS	
Time: 2 hours	

233/3

CHEMISTRY

FORM III

INSTRUCTIONS TO THE CANDIDATES:-

- Write your **name** and admission **number** on the spaces provided.
- Answer *all* the questions in the spaces provided.
- Mathematical tables and electronic used calculators may be
- All working **MUST** be clearly shown where necessary.

Question	Maximum score	Candidate's score
1	20	

- 1. You are provided with:
 - Solution A containing 21.2g per litre of anhydrous sodium carbonate (Na₂CO_{3(s)})
 - Solution B Nitric (V) acid solution
 - Solution C metal hydroxide M(OH)_x

Procedure 1

- i) Fill the burette with solution B
- ii) Using a pipette, transfer 25cm³ of solution A into a clean conical flask and add 1-2 drops of methyl orange indicator.
- iii) Titrate with solution B from burette.
- iv) Repeat the titration to obtain accurate results and record the data in the table below.

(4 marks)

Titre	I	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution B used (cm ³)			

a) Find the average volume of solution B used.

(1 mark)

b) Given that the equation for the reaction is

$$Na_{2}CO_{3(aq)} + \ HNO_{3(aq)} - \ NaNO_{3(aq)} + H_{2}O_{(l)} \ + CO_{2(g)}$$

Calculate;

(i) The number of moles of sodium carbonate in 25 cm³ of solution A (3 marks)

	(ii) The number of moles of the acid in	the titre volu	ıme obtaine	d. (1 n	nark)
c)	Hence find the molarity of nitric (V) ac	cid solution B	3.		(1 mark)
	Procedure II				
	i) Pipette 25cm ³ of solution C into a cle	ean conical fla	ask.		
	ii) Add 1-2 drops of methyl orang	e indicator.			
	iii) Titrate with solution b.				
	iv) Repeat the titration to obtain ac	ccurate results	and fill the	table below.	
				(4 n	narks)
	Table II				
	Titre	I	II	III	
	Final burette reading (cm ³)				
	Initial burette reading (cm ³)				_
	Volume of solution B used (cm ³)				
a)	Find the average titre volume of solution	on B used.		(1 n	nark)

b)	Calculate;	
	i) The number of moles of solution B used in the reacting volume.	(1 mark)
	ii) The number of moles of solution C in 25cm ³ of the the solution.	(1 mark)
c)	Determine the equation for the reaction between the hydroxide $M(OH)_{x}$ a	nd nitric (V) acid. (2marks)
d)	What is the value of x in $M(OH)_x$?	(1 mark)

Confidential

Each candidate requires;

- ✓ About $100cm_3$ of Solution A containing 21.2g per litre of anhydrous sodium carbonate $(Na_2CO_{3(s)}$.
- ✓ About 150 cm₃ of 0.3M Nitric (V) acid solution B
- ✓ About 100cm³ of 0.2M sodium hydroxide solution C.
- ✓ 50cm³ burette
- ✓ 25cm³ pipette
- ✓ A clamp, boss and stand
- ✓ Methyl range indicator
- ✓ 3 conical flasks
- ✓ White tile.