FORM 3 TERM 2 NOVEMBER 2021 PHYSICS PAPER 2

Section A (25 marks)

	Section A (25 marks)	
1.	Give one difference between luminous and non-luminous sources of light.	(1mk)
•••••		
2.	When a negatively charged rod is brought near the cap of a leaf electroscope, the le Explain this observation,	af rises. (2mks)
3.	Figure 2 represents a displacement-time graph for a wave. 5 10 15 20 25 30 35 Time (ms)	-→
	Determine the frequency of the wave.	(2mks)
4.	State the conditions necessary for a wave incident on a slit to be diffracted.	(2mrks)

5. In an experiment to determine the focal length of a concave mirror, magnification M was determined for various image distances v. Figure 3 shows a graph of magnification M against image distance v for the results from the experiment.

	Given that $M = 1 \frac{v}{f}$, determine the focal length f of the mirror.	(3mks)
6.	A hair dryer is rated 2500W, 240V. Determine its resistance.	(2mks)

7. **Figure 4** shows the magnetic field pattern round a current-carrying conductor. Indicate on the conductor the direction of the current. (1mk)

Figure 4

8.	Why is repulsion the sure test for a magnet?	(1mk)

9. Figure 5 shows a ray of light incident on an air bubble which is inside water,

	Complete the ray to show the path it follows through the air bubble.	(1mk)
10.	Explain how polarization of a cell increases the cell's internal resistance.	(2mks)
•••••		
•••••		

11.

1. A positively charged material was brought close to an insulated metallic ball as shown in Fig 4. State and explain the distribution of charge in the ball (2mks)

Fig. 4

	2. Explain why sound cannot be heard from far when one shouts in a forest	(1mk)
12.	Using the variation of resistance with temperature, differentiate between a conductor and	d a
	semiconductor.	(1mk)
		•••••
13.	A cell of internal resistance 0.5Ω is in a circuit containing a 10Ω resistor. A current	
	of 2A flows in the circuit. Determine the emf of the cell.	(2mks)
		••••••
		••••••

Section B (55 marks)

14. (a)	(i)	State Snell's law of refraction of light	(1mk)
	(ii)	Give two advantages of totally internally reflecting prisms over plane	
		mirrors.	(2mks)
•••••			

Fig. 7			
White ight	Red 180	Air	≽ Eye
Violet —		Kerosene	
	200	Water	
	n that the refractive index of water and kerosene are 1.33 and	1.44 respective	ely,
	rmine the refrective index for the kerosone, water interface		(2mlza)
(i)	the refractive index for the kerosene – water interface		(3mks)
•••••			
•••••		• • • • • • • • • • • • • • • • • • • •	
•••••		• • • • • • • • • • • • • • • • • • • •	
•••••			
(ii)	determine and show on the figure the path of the rays of lig	tht between the	
	Kerosene-water surface		(3mks)
(iii)	Why does the colours of the light separate at the kerosene l	layer.	(1mk)
(iv)	State and explain the observation that the eye above the two		
(iv)	State and explain the observation that the eye above the two see		d (2mks)
(iv)			
(iv)			

A ray of light is incident on a kerosene water interfaces as shown in figure 7

(b)

15.	(2	a)	Sta	te (Oh	m'	S	lav	V																			(1r	nk	(1	
			 							 	. 	••	 	• •	 	• • •	 	 	••	 	 	 	• •	 	 	 	 • •	 				
			 	• • •		• • •				 	· • •		 	• •	 		 	 		 	 	 ٠.	. .	 	 	 	 	 				

(b) The figure 8 below shows a circuit with a coil used to warm oil in a beaker.

Fig. 8

	(i)	Explain how heat is produced in the coil	(2mks)
	(ii)	Given that the reading of the ammeter is 2.4A determine the resistance of	f
		the coil.	(3mks)
	(iii)	How much heat is produced in the coil in a minute?	(3mks)
•••••			
	• • • • • • • • • •		

		(iv)	Give two changes that can be made in the set up in order to produce me	ore
			heat per minute.	(2mks)
16.	(a)	Defin	e capacitance of a capacitor	(1mk)
	•••••	••••••		•••••••
	The fi	gure be	elow shows a charged electroscope two aluminium plates A and B arrang	ged a shown
	State:	and exp	plain the observations made when: $A = A = B$ $A = B$	
	(i)	_	educed	(2mks)
	•••••	••••••		•••••
	(ii)	the pl	ate A is more horizontally	(2mks)
	(iii)	a shee	et of polythene is placed between A and B	(2mks)

(b) Three capacitors are connected to a 10V battery as shown below.

(i) Calculate the combined capacitance

(ii) What is the charge on the 3μ F capacitor (3mks)

(3mks)

17. Students set up a mass attached to spring such that when it oscillates it taps on water surface in a wide shallow tank.

Fig. 6

The students measured time for 20 oscillations and found that the mass takes 36 seconds.

(i)	Determine the periodic time of the mass	(2mks)
(ii)	Calculate the frequency of the waves produced on the water surface	(3mks)
 (iii)	Given that the student counted four ripples between the mass and end B of the Determine the speed of the waves.	e tank, (3mks)
a	A machine is a device that enables work to be done more easily and convenie any two ways in which a machine makes work easier. marks)	ntly. State

	are 7 shows a whee			raise a load	W by applying a	ın effort I
744		R				
i)	Show that the v	velocity ratio	(V.R) of th	nis machine is	given by $\frac{R}{r}$	(3]
	Circan that a	5 on ord D	50 and date			
ii)	200N if the eff				ort required to i	(3)
	airtight flask contactory in the two lin					
	S cm Hg	4 cm				
Calculate the pressure =	the pressure of the $(1.0 \text{ x} 10^5 \text{ N/m}^2)$	gas (Density	of mercury	$= 1.36 \times 10^4$	kg/m ³ and atmo	spheric (3r
	• • • • • • • • • • • • • • • • • • • •					

d.	State one way of making the surface tension of a liquid stronger.	(1mk)