
2 HOURS

SECTION A (25 MARKS) (Answer ALL the questions in the spaces provided)

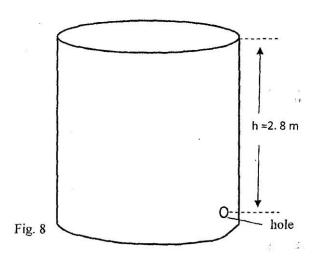
1. What is the reading on the micrometer screw gauge shown below with an error of +0.5mm?

4. In the set up shown below, it is observed that the level of the water initially drops before starting to rise. Explain this observation (2mks)

8. Explain how a person is able to drink a soda using a drinking straw.

(2mks)

9. Give a r	eason why air is not commonly used as the fluid in a hydraulic lift. (1mk)
 10.State oı experim	ne assumption made when estimating the size of an oil molecule in the oil drop ent. (1mk)
	B
 11.The figu	are below shows a swinging pendulum.
	A
State to C	e the energy conservation taking place as the pendulum moves from A to B and B $(2mks)$


12. The identical springs of spring constant 3N/cm are us	sed to support a load of 30N as shown
Determine the extension on each spring	(3mks)
13. In a vacuum flask, the walls enclosing the vacuum ar reason for this.	re silvered on the inside. State the (1mk)
14. State the features that govern the strength of a spiral	l spring of a given material.
	(2mks)

15. Sketch velocity-time graph of a body moving down a viscous fluid.	(1mk)
	` '
SECTION B (55 MARKS)	
(Answer ALL the questions in the spaces provided)	
16. (a) State the principle of conservation of linear momentum.	(1mk)
(b) Coloulate the recoil velocity of a man of mass 0 Alar which fix	
(b) Calculate the recoil velocity of a gun of mass 0.4kg which fin 0.0045kg at a velocity of 400ms ⁻¹	(3mks)

(i)	State two factors which affect frictional force of a body	(2mks)
(ii)		(3mks)
(iii)	State three advantages of friction	(3mks)
17.		
	a) Fig. 8 shows a cylindrical can filled with a liquid of dediameter 2.0 cm is drilled at a depth of 2.8 m from the	_

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Tel:+254202319748

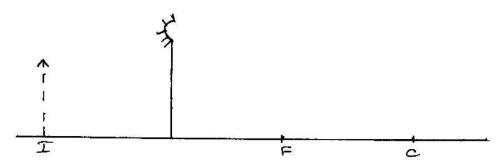
E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

Determine:

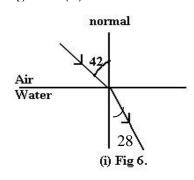
i. The cross-sectional area of the hole.

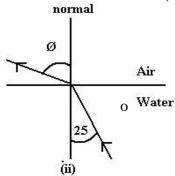
(2mks)

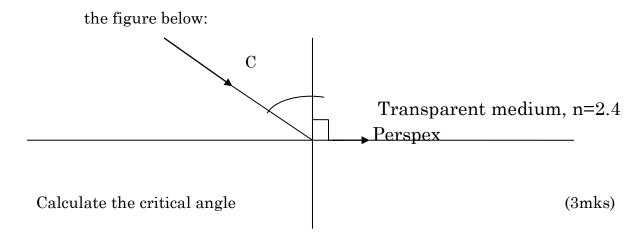
ii. The maximum pressure exerted by the liquid at the hole. (2mks)


- iii. The maximum force exerted on a jet of liquid through the hole. (2mks)
- b) State the principle of moments (1mk)

.....


	0 cm 25cm	30cm	100cm
	500		Meter rule
i.	500g Determine the mass of	of the meter rule ((3 mks)
ii.	suspended from the 7	remaining on the knife-edge at the commark. The mass of 500g is osition of the 500g mass (3 m	moved until the rule is balance
	a) For a body movi	ing with a constant acceleration	1 41 4


ii. iii.	$S = ut + \frac{1}{2}at^2$ where S is the distance covered A car of mass 1200kg moving at 90km/h is brought 20m. Calculate the breaking force (3mks)	
b) i.	An object is projected vertically upwards with a velocity after 5 seconds	ocity of 200m/s. Calculate: (2mks)
ii.	The distance covered in the first 8 seconds	(2mks)
iii.	The maximum height reached	(2mks)


c) The figure below shows a uniform	cardboard in the shape of a parallelogram.
Legate the control of manity of the conduction	and (1 mls)
Locate the centre of gravity of the cardbo d) Two samples of bromine vapour ar conditions, one in a vacuum and the other in which bromine diffuse slower. 19.	re allowed to diffuse separately under different
a) State two factors affecting stability of body	(2mks)
force of 50 N applied at point 'A' Just makes the $1m \longrightarrow A \longrightarrow F=50N$ $2m \longrightarrow Plate$	
Calculate the weight of the plate. c) Fig 4 shows an image I formed by an objection.	(3mks) ect placed in front of a convex mirror. C is the
centre of curvature of the mirror. Using 1	ray diagram, <u>locate</u> the object position. (3mks)

d) Fig 6 (i) and (ii) show refraction of light at air-water interface. $\underline{\text{Determine}}$ angle \emptyset in figure 6(ii) (3mks)

e) A ray of light now travels through a transparent medium into the Perspex as shown in