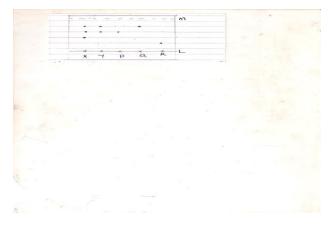
## FORM 4 END TERM 2 2020 CHEMISTRY PAPER 2

1. Study the information given below and answer the questions that follow.

| Element | Atomic radius(nm) | Ionic radius nm | Formula of oxide              | Melting point( <sup>0</sup> c) |
|---------|-------------------|-----------------|-------------------------------|--------------------------------|
| A       | 0.364             | 0.421           | $A_2$ O                       | -119                           |
| D       | 0.830             | 0.711           | D O <sub>2</sub>              | 837                            |
| Е       | 0.592             | 0.485           | $E_2 O_3$                     | 1466                           |
| G       | 0.381             | 0.446           | G <sub>2</sub> O <sub>3</sub> | 242                            |
| J       | 0.762             | 0.676           | Ј О                           | 1054                           |


a. Which elements are non-metals .Give a reason?(2mks)

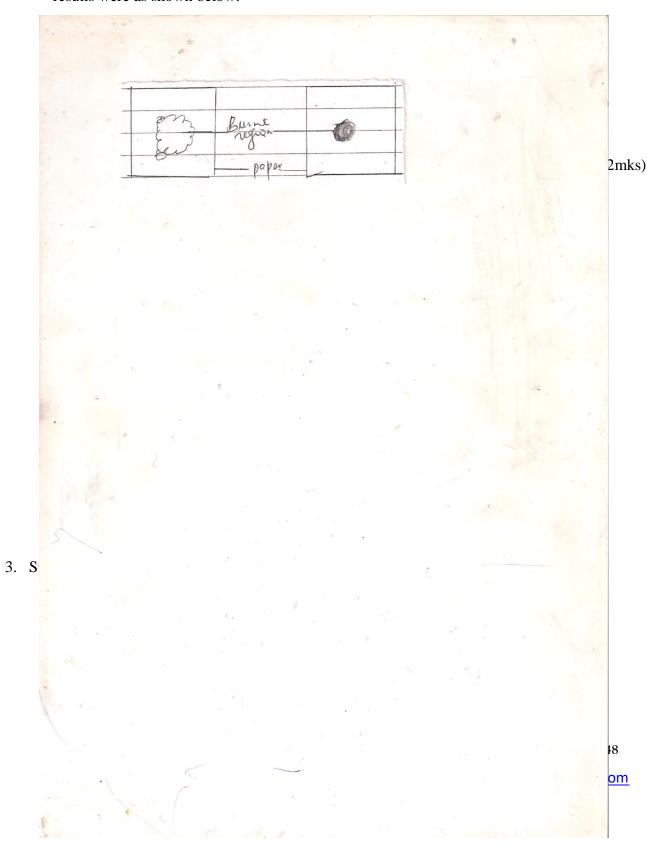
- b. I)Write a formula of a compound formed when J combines with A(1mk)
  - ii)What type of bond exist between J and D.(1mk)
- c. Explain why the melting point of the oxide of E is higher than that of the oxide of G.(2mks)
- d. i)Which two elements would react with each other most vigorously. Give a reason. (2mks)
  - ii) Which element would be suitable for making utensils for boiling water. State two properties that make the elements suitable for the use. (2mks)

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Tel:+254202319748

E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

- e. Elements Qand R have electronic configuration 2.8.2 and 2.8.6. respectfully. i)Explain why the ionic radius of R is expected to be greater than its atomic radius.(1mk)
  - ii)Write the equation for the reaction between Q and R.(1mk)
- 2. The chromatogram below is of and acid enzyme x and y and three simple sugar P,Q and R.




a. I)Name two simples sugars present in both x and y.(2mks) ii)Name lines L and M. (2mks)

L-

M-

iii) What property is exhibitated by simple sugar x.(1mk)

b.Two pieces of paper were lowered into different Bunsen burner flames and removed quickly.The results were as shown below.



## Dilute hydrochloric acid

|    |               |                                        | ]                           | Pb(NO <sub>3</sub> )    |                             |                       |
|----|---------------|----------------------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------|
|    |               |                                        | Excess                      |                         |                             |                       |
|    |               |                                        | NaoH                        |                         |                             |                       |
| a. | Identif<br>i. | fy<br>White ppt I                      |                             |                         | (1mk)                       |                       |
|    | ii.           | Solution II                            |                             |                         | (1mk)                       |                       |
|    | iii.          | Residue II                             |                             |                         | (1mk)                       |                       |
| b. | Write         | ionic equation for                     | the reactions colour        | rless solution (II) wit | h Pb(NO <sub>3</sub> )      | mk                    |
| c. |               | observations that<br>less solution(II) |                             | n ammonia solution      | is added drop wise          | till in excess to the |
| d. |               | are P <sup>H</sup> values of           |                             | V                       | V                           | W                     |
|    | Co            | olution<br>mpiled & distribute         | Z<br>ed by Schools Net Keny | Ya, P.O. Box 15509-0050 | X<br>3, Nairobi   Tel:+2542 | W<br>202319748        |

|      | $P^{H}$                             | 6.5                | 3.5                     | 2.2                   | 7.2                                                                    |
|------|-------------------------------------|--------------------|-------------------------|-----------------------|------------------------------------------------------------------------|
| i.   | Which solution is a. Acidic rain (1 | •                  |                         |                       |                                                                        |
|      | b. Potassium hyd                    | roxide (1          | mk)                     |                       |                                                                        |
| ii.  | A basic substance                   | V reacted with bo  | oth solutions Y and     | X.What is the natur   | re of V.(2mks)                                                         |
| iii. | Name two substan                    | ces that shows thi | is characteristics in o | question (ii) above.( | (2mks)                                                                 |
| 4.   |                                     | colourised bromin  | ne in tetra chloromet   | thane and burnt in a  | ore. A mixture of gases ir with a yellow flame. er heated pumice.(1mk) |
|      | b. Name the most lik                | ely type of compo  | ound causing decolo     | urisation of the broa | mine solution.(1mk)                                                    |
|      | c. Name two compou                  | ands formed wher   | n the gas mixture abo   | ove burns in air.(1m  | nk)                                                                    |
|      | ii.Study the flow c                 | hart below and ar  | nswer the questions t   | hat follow.           |                                                                        |
|      |                                     | Conc               | $H_2$ $SO_4$            |                       |                                                                        |

|    | high                                                                                                                                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | pressure                                                                                                                                                                        |
|    | $\mathrm{H}_2$                                                                                                                                                                  |
|    |                                                                                                                                                                                 |
|    | $O_2(Excess)$                                                                                                                                                                   |
|    |                                                                                                                                                                                 |
|    | Line water                                                                                                                                                                      |
|    | Na                                                                                                                                                                              |
| a. | Identify substances (4mks) A- B- F- G-                                                                                                                                          |
| b. | Write down the equation for the formation of i. Substance C                                                                                                                     |
|    | ii. E and F                                                                                                                                                                     |
|    | iii. Gas G                                                                                                                                                                      |
| c. | Substance D was formed to have molecular mass of 42,000 .<br>Determine the number of molecules present in the substances<br>(H+1 ,C=12) 2mks                                    |
|    | Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi   Tel:+254202319748  E-mail: infosnkenya@gmail.com   ORDER ANSWERS ONLINE at www.schoolsnetkenya.com |

- d. State
  - i. The condition necessary for the conversion of ethanol to substance A.(1mk)
  - ii. The catalyst required in the conversion of A and B.(1mk)
- 5. The table below gives the solubility of hydrated copper(ii) sulphate in mol dm<sup>-3</sup> at different temperatures.

| Temperature( <sup>0</sup> ) | Solubility mol dm <sup>-3</sup> |
|-----------------------------|---------------------------------|
| 20                          | $8 \times 10^{-2}$              |
| 40                          | $12 \times 10^{-2}$             |
| 60                          | $16 \times 10^{-2}$             |
| 80                          | 22 x 10 <sup>-2</sup>           |
| 100                         | 30 x 10 <sup>-2</sup>           |

- i. On the drid provided plot a graph of solubility of copper(II) sulphate (vertical axis) against temperature.(3mks
- ii. From the graph ,determinee the mass of copper(II) sulphate deposited when the solution is cooled from  $70^{\circ}$ c to  $40^{\circ}$ . (Molar mass of hydrated copper(ii) sulphate = 250g)

b.In an experiment to determine the solubility of sodium chloride ,5.0 cm<sup>3</sup> of a saturated solution of sodium chloride weighing 5.35g were placed in a volumetric flask and diluted to a total volume of 250cm<sup>3</sup>.

 $25.0~\mathrm{cm}^3$  of the dilute solution of sodium chloride completely reacted with  $24.1~\mathrm{cm}^3$  of  $0.1~\mathrm{M}$  silver nitrate solution.

$$Ag\ No_{3(aq)} + NaCl_{(aq)} \qquad \qquad Ag\ Cl_{(s)} + NaNO_{3}(aq)$$

Calculate;

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Tel:+254202319748

E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

| i.   | Moles of silver nitrate in 24.1cm <sup>3</sup> of solution.(1mk)                                     |
|------|------------------------------------------------------------------------------------------------------|
| ii.  | Moles of sodium chloride in 25.0cm <sup>3</sup> of solution.(1mk)                                    |
| iii. | Moles of sodium chloride in 250cm <sup>3</sup> of solution(1mk)                                      |
| iv.  | Mass of sodium chloride in 5.0cm <sup>3</sup> of saturated chloride solution (Na=23.0 Cu=35.5) (1mk) |
| v.   | Mass of water in 5.0 cm <sup>3</sup> of saturated solution of sodium chloride(1mk)                   |
| vi.  | The solubility of sodium chloride in g/100 g of water.(2mks)                                         |
|      | Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi   Tel:+254202319748       |
|      | E-mail: infosnkenya@gmail.com   ORDER ANSWERS ONLINE at www.schoolsnetkenya.com                      |

| 6.     | The flow chart below shows some of the processes involved in large scale production of $sulphur((vi) acid)$ .                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------|
|        | Use it to answer the questions that follow.                                                                                     |
|        | Sulphur(iV)oxide                                                                                                                |
| oxyger | sulphur (vi) oxide Oleum                                                                                                        |
|        | Water                                                                                                                           |
| a.     | Name the process                                                                                                                |
| b.     | I)Name substance A.(1mk)                                                                                                        |
|        | ii)Write an equation for the process that takes place in the absorption tower.(1mk)                                             |
| c.     | Vanadium (v) oxide is commonly used catalyst in the process.  i. Name another catalyst which can be used for this process.(1mk) |
|        | Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi   Tel:+254202319748                                  |

E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

|    | ii. Give two why reasons vanadium (v) oxide is commonly used catalyst.(2mks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d. | Sate and explain the observations made when concentrated sulphuric (vi) acid is added to crystals copper(ii) sulphate in a beaker(2mks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| e. | The reaction of concentrated sulphuric (vi) acid with sodium chloride produces hydrogen chloride gas. State the property of concentrated sulphuric (vi) acid illustrated in the reaction. (1mk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| f. | Name two uses of sulphuric (vii) acid.2mks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7. | The above diagram shows a set up that can be used for industrial manufacture of hydrochloric acid. Study it and answer the questions that follow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | Reaction Chamber  The diagonal of the state |
|    | v.3choolshetkerryu.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| a. | Name<br>i. | Produce F                                                                                                                                                                                                                              |
|----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | ii.        | Substance E                                                                                                                                                                                                                            |
| b. | Explai     | n are application of hydrochloric acid in textile industry.(1mk)                                                                                                                                                                       |
| c. | •          | chloricb acid was added to iron powder in a test tube and shaken thoroughly to mix to 1cm <sup>3</sup> ulting solution, six drops of acqueous solution of ammonia were added.  State the observation made on adding ammonia solution.( |
|    | ii.        | Explain the observation sated above and white an ionic equation for the reaction.(2mks)                                                                                                                                                |
|    |            | mpiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi   Tel:+254202319748                                                                                                                                           |

of

| iii. | Concentrated hydrochloric is 35% pure with density 1.18g/cm <sup>3</sup> . Calculate it's concentration in moles per litre(3mks) |
|------|----------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |
|      |                                                                                                                                  |