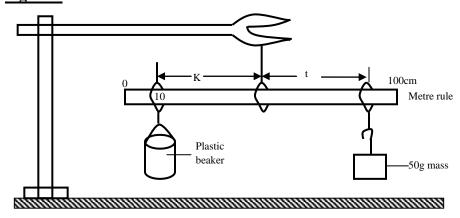
NAME	ADMNO	CLASS

END TERM EXAMS-2019

PHYSICS PAPER 3 PRACTICAL FORM -4 TIME: 2 1/2 HOURS


INSTRUCTIONS TO CANDIDATES

- 1. You are provided with the following apparatus:
 - ✓ A metre rule
 - ✓ A 250 ml plastic beaker
 - ✓ 4 pieces of cotton thread each 30cm long
 - ✓ A piece of cellotape
 - ✓ 100ml measuring cylinder
 - ✓ Complete stand
 - ✓ A 50g mass
 - ✓ Water in a beaker

Proceed

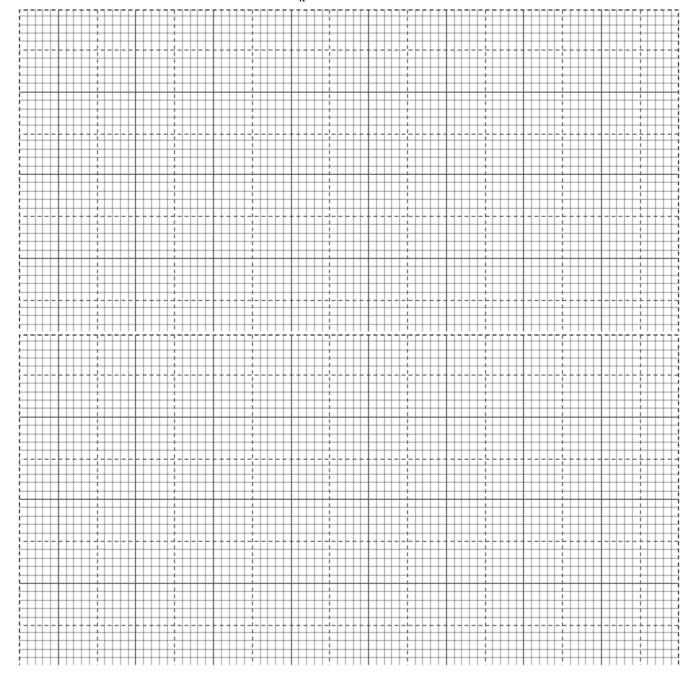
- (a) Suspend the metre rule using the thread and ensure it balances horizontally (the point of balance should remain unchanged throughout the experiment.
- (b) Suspend the empty plastic beaker at the 10cm mark and hang the 50g mass on the other side of the metre rule.
 - Move the 50g mass along the metre rule until the set-up balances horizontally as shown in the figure below.

Figure 1

(c) - Record the distances K and t

(1 mark)

K _____cm T cm


(Use the cellotape to fix the position of 50g mass)

- The 50g mass should remain at this position throughout the experiment.
- (d) Using the measuring cylinder, measure 20cm³ of water and pour it into the pastic beaker. Adjust the position of the beaker until the metre rule balances horizontally again. Record the distance K in table 1 below
- (e)Repeat the procedure (d) above for the other value of V shown.

(6 Marks)

Volume, V (cm ³)	0	20	40	60	80	100	120
Distance, K, (cm)							
$\frac{1}{k}$ (cm ⁻¹)							

(f) Plot a graph of volume, V(y - axis) against $\frac{1}{k}$ (5 Marks)

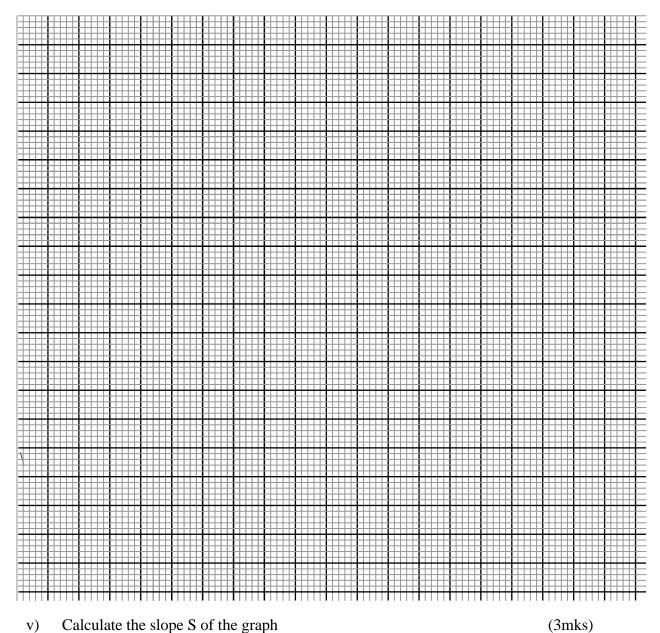
(g) Determine the slope, S, of the graph.

(2 Marks)

(h) Given that $V = 1000 \left(\frac{50t}{dk}\right) - \frac{1000m}{d}$ Use your graph to determine the values of

(i) d =

(ii) m =		(3 marks)					
QUE a)	STION 2 You require; Two dry cells (size D)	•	Mounted resistance wire on a mm scale 7 connecting wires (3 with crocodile				
• • • Proce	A two cell holder A voltmeter An ammeter eed as follows	•	clops) Vernier calipers (to be shared among five students				
i)	Set the circuit as shown in figure below V						


ii) With the crocodile clip at P (i.e. L= 100cm) take the voltmeter reading V and the ammeter reading I. Repeat the procedure for values of L=90, 70, 50, 40 and 20cm respectively Record your reading in table below

L (cm)	L(m)	V	I	V/I
100				
90				
70				
50				
40				
20				

iii)	a)	With the same	apparatus	design a	circuit to	determine	the e.m.f	of the t	two cells	(1mk)
------	----	---------------	-----------	----------	------------	-----------	-----------	----------	-----------	-------

b) Measure the e.m.f of the cells _____ (volts) (1mk)

iv) Plot a graph V/I (ohms) against L (metres)

Calculate the slope S of the graph v)

vi) Measure the diameter d of the mounted resistance wire (1mk) $d \hspace{-0.5mm}=\hspace{-0.5mm} \dots \hspace{-0.5mm} m \hspace{-0.5mm}=\hspace{-0.5mm} \dots \hspace{-0.5mm} m \hspace{-0.5mm} e \hspace{-0.5mm} t \hspace{-0.5mm} r \hspace{-0.5mm} s$

vii) Given that $S = \pi d^2 /4h$. Calculate the value of h (2mks)