Name	Index No
School	Date
Candidate's signature	

232/2 PHYSICS PAPER 2

TIME: 2 HOURS

POST MOCK FORM 4 TERM 3 2019

Kenya Certificate of Secondary Education (KCSE)

INSTRUCTIONS TO THE CANDIDATES:

- Write your **name** and **index number** in the spaces provided above
- This paper consists of **two** sections **A** and **B**.
- Answer **all** questions in section **A** and **B** in the spaces provided.
- All working **must** be clearly shown in the spaces provided.
- Mathematical tables and electronic calculators may be used.
- Take'g' 10m/s2

For Examiners' Use Only

SECTION	QUESTION	MAXIMUM	CANDIDATE'S
		SCORE	SCORE
A	1 - 14	25	
В	15	15	
	16	14	
	17	14	
	18	12	
TOTAL		80	

SECTION A

1.	What property of light is suggested by the formation of shadows?	(1mks)
2.	You are provided with the following; A cell and holder, a switch, a rheostat, an Amme	eter, a
	voltmeter and connecting wires. Draw a diagram for a circuit that could be used to invariation of the potential difference across the cell with the current drawn from the ce	_
3.	An un-magnetized steel rod is clamped facing North-South direction and then hamme	red
	repeatedly for some time. When tested, it is found to be magnetized. Explain this obse	ervation.
		(2mks)
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
1	A lady holds a large conceys mirror of focal langth 1 m 20 cm from her focal state ty	
4.	A lady holds a large concave mirror of focal length 1 m, 80 cm from her face, state two characteristics of her image in the mirror.	(2mks)
	characteristicsor her image in the mirror.	, ,
5.	A girl brought a positively charged rod close to the cap of a gold leaf electroscope; sh	e observed
	that the gold leaf diverged further. Explain this observation.	(2mks)
6.	In an experiment using a ripple tank the frequency, f, of the electric pulse generator w	
	to one third of its value. How does the new wavelength compare with the initial wave	_
(3		•••••
• • • • •		

Figure 1 shows a ray of light incident on the face of a water prism 7.

FIG.1

FIG.1

Sketch the path of the ray as it passes though the prism. Critical angle for water is 49^0 (1mk) A heating coil is rated 100W, 240V. At what rate would it dissipate energy if it is connected to a 8. 220V supply? (3mk) 9. Figure 2 shows an object 0 placed in front of a concave lens with principal foci F and F Construct

a raydiagram to locate the position of the image (1mk)

10.	State the difference between X-rays and Gamma rays in the way in which they are produced.
	(1mk)

			••••			
A narrow b	eam of electron	ns in a cathode 1	rav oscillosco	ope (CR0) s	trike the sc	reen produc
		d on the screen				
nput of the				welley and so	0100 10 001	
input of the	Cito					
• • • • • • • • • • • • • • • • • • • •	, 	,	••••••	• • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • •
•••••••		,	•••••	• • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • •
••••••		,		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
•		· ·, ·	1.37 .1		······	
		icity using meta	il X, the grap	h shown in	figure 3 wa	as obtained
answer qu	estions 13.	LLIGETTETTETT	TO DESCRIPTION OF THE PERSON O		State Life Late at Late a	
2						
2						
		/				
	/					
al Vs (V)						
Potential Vs (V)						
opping Potential Vs (V)						
Slopping Potential Vs (V)						
Slopping Potential Vs (V)	***************************************		15 7 6 14			
Slopping Potential Vs (V)	5×10 ¹¹ Frequence	l Ф X l O IIII cy f (HZ)	15×10 ¹⁴			
0		icy f (Hz)	low which no	o photoelec	tric emission	on occurs.
0			low which no	o photoelec	tric emissio	on occurs.

14. You are provided with 12V a.c source, four diodes and resistor. Draw a circuit diagram for a full waverectifier and show the points at which the output is taken. (2mk)

•••••	•••••	••••••				• • • • • • • • • •		• • • • • • • • • •		
 (a)	Given	a bar mag	net, an iro	 n bar and	a string					
	(i)		a simple e			nguish be	etween the	ne magne	et and the	e ir
	(11) St a	ite with rea	asons the c	observatio	on that wo	ould be n	nade in t	ne exper	iment.	
										• • • •
				tize two s		s P and (y using 6	electric ci	urrent, tv	wo
		s) were ob	t to magne otained as s			s P and (using 6	electric ci	urrent, tv	WO
	(graph	s) were ob	ptained as s		figure4		using 6	FIG.		wo
Usinş	(graph	s) were ob	ptained as s	shown in	figure4 Q Curren	2		FIG.	4	
	(graph	s) were ob	ptained as s	shown in	figure4 Q Curren	2		FIG.	4	
	(graph	s) were ob	ptained as s	shown in	figure4 Q Curren	2		FIG.	4	th
	(graph	s) were ob	ptained as s	shown in	figure4 Q Curren	2		FIG.	4	th
	(graph	s) were ob	ptained as s	shown in	figure4 Q Curren	2		FIG.	4	th
	(graph	s) were ob	ptained as s	shown in	figure4 Q Curren	2		FIG.	4	th

In the set up in figure 5, the suspended metre rule is in equilibrium balanced by the magnet and the weight shown. The iron core is fixed to the bench.

(i)	State the effect on metre rule when the switch S is closed.		(1mk)
(ii)	What would be the effect of reversing the battery terminals		(1mk)
(iii)	Suggest how the set up in figure 5 can be adapted to measu	ura tha current flowing	
	buggest now the set up in figure 5 can be adapted to measu	ne the current nown	ng m
	the current circuit.	ne the current flown	
	the current circuit.		(3mk)
	the current circuit.		(3mk)
	the current circuit.		(3mk)
(a)	(i) What is the difference between longitudinal and tra	nsverse waves?	(3mk)
(a)	the current circuit.	nsverse waves?	(3mk)
(a)	(i) What is the difference between longitudinal and tra	nsverse waves?	(3mk)

(b)	A mineworker stands between two vertical cliffs 400m from the nearest cliff. The cliffs are									
	Xdistance apart. Every time he strikes the rock once, he hears two echoes, the first one									
	after	2.55, while the second	d follows 2s later. From this information	n; calculation:						
	(i)	The speed of the so	und in air	(2mk)						
•••••	• • • • • • • • •									
•••••	• • • • • • • • • • • • • • • • • • • •									
•••••	• • • • • • • • •									
•••••		The value of X								
	(ii)			(3mk)						
•••••	•••••									
(c)	In an	experiment to observ	re interference of light waves a double sl	lit is placed close to the						
` /	source. See figure 5									
		-	9773							
			S ₁							
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
			Sc Sc	reen						
		Monochromatic								
		Source	Double Slit							
	(i)	State the function o	of the double slit	(1mk)						
•••••	• • • • • • • • • • • • • • • • • • • •									
•••••										
	(ii)	Describe what is ob	oserved on the screen	(2 mks)						
•••••	• • • • • • • • • • • • • • • • • • • •									
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •								
•••••		State what is obser	ved on the screen when							
	(iii)	State what is observ	on the sciech when							
•••••	• • • • • • • • •									
•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••						

		i). The slit separation S1S2 is reduced	(1mk)
		ii) White light source is used in place of monochromatic source	(1mk)
 17. a)	The c	liagram in figure 6 below shows a narrow beam of white light onto a glass	
	(i)	What is the name of the phenomenon represented in the diagram?	(1mks)
	(ii)	Name the colour at x and Y.	(2mk)
	(iii)	Give a reason for your answer in part (ii) above.	(1mk)
	(iv)	What is the purpose of the slit?	(1mk)

b) Figure 7 below shows the path of ray of yellow light through a glass prism. The speed of yellow light in the prism is 1.8×10^8 m/s.

Determine the refractive index of the prism material (Speed of light in vacuum, C i) $= 3.0 \times 10^8 \,\mathrm{m/s}$) (3mks) (ii) Show on the same diagram, the critical angle c and hence determine its value. (3mks) Given that $r = 31.2^{\circ}$, determine the angle 0. (iii) (3mks)

18.	(a)	X- ra	ys are used for detecting cracks inside meta' beams (i)State the type of the	X- rays
		used.		
		(ii)	Give a reason for your answer in (i) above.	
	(b)	Figur	re 1 shows the features of an X- ray tube	
			High p.d	
			Lead Target shielding	
			Cooling Finns	
		C	B Oil	
			Filamnet Service 13	
			Electron	
			beam	
		i)	Name the parts labelled A and B.	(2mks)
		(ii)	Explain how a change in the potential across P changes the intensity of t	
			rays produced in thetube.	(2 mks)

	(111)	During the operation of the tube, the target becomes very not. Explain now this				
		heat is caused.	(2 mks)			
			•••••			
	(iv)	What property of lead makes it suitable for use as shielding material?	(1mk)			
(c)	ln a c	ertain X- ray tube, the electrons are accelerated by a Pd of 12000V. Assur	ning all the			
	energ	gy goes to produce X- rays, determine the frequency of the X- rays produce	ed. (Plank's			
	const	ant h= 6.62×10^{-34} is and charge on an electron, e = 1.6×10^{-19} C).	(3mks)			