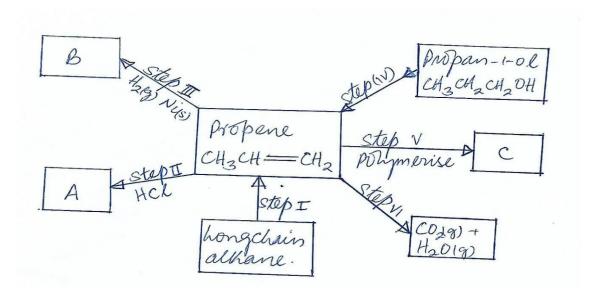
NAME	•••••	INDEX NO	CLASS
ADM NO	DATE:	SIGN:	
233/2			
Chemistry paper two			
Time 2 hours.			

POST MOCK TERM 3 2019 Kenya Certificate of Secondary Education (KCSE)

233/2 Chemistry paper two Time 2 hours.

INSTRUCTIONS

- 1. write your name and index number in the space provided
- 2. sign and write the date of examination in the space provided above
- 3. Answer all questions in the space provided after each question
- 4. mathematical tables and electronic calculators may be used
- 5. all working must be clearly shown where necessary


1. The grid below forms part of the periodic table. Study it and answer the questions that follow. The letters do not represent the actual symbols of the elements.

P			T	V	W	Y	M
	Q	S	U		X		
	R					Z	

a)	Write the general name given to the elements to which Y and Z belong.	(1mk)
		• • • • • • • • • • • • • • • • • • • •

b)	An element N has an atomic number of 15. Write down its electronic arrangement and					
	hence fix it in its right position on the grid above. (2mks)					
	Electronic arrangement					
c)	Compare the size of the atom of R and that of its ion. Explain your answer. (2mks)					
d)	Give the formula of the compound formed between					
	i. P and W½ mk					
	ii. T and Y½ mk					
e)	Compare the melting points of element Q and S. Explain (2mks)					
f)	State the least reactive element in the grid. Give a reason for your answer (2mks)					
	Element					
	Reason					
g)	Give two advantages that element S has over element Q in making electric cables (2mks)					
h)	Draw (a) dot (.) and cross (x) diagram to represent the bonding in compound formed					
	between T and Y (2mks)					

2.	_	the condensed formulae below and answer the questions that follow				
	(a) I (CH ₃ CH (CH ₃) CH ₂ CHCH ₂				
II CH ₃ CH ₂ CH (OH) CH ₂ OH						
	i.	Draw the structural formula of each of the compounds I and II (2mks) I				
		II.				
	ii.	Give the systematic name of each of the compounds represented by the formulae above (2mks) I				
		II				
	iii.	To which homologous series does the compound represented by I belong (1mk)				
		ne flow chart below shows some reactions starting with a long chain alkane. Study it and er the questions that follows.				

nks)
i

A

B_____

C_____

ii. What is the name given to the process represented by

Step I_______1/2 mk

Step III______1/2 mk

Step IV_______1/2 mk

Step VI_______1/2 mk

iii. Write down the chemical equation represented by the reaction in step $VI\ (1mk)$

3. (a) The following table shows the standard reduction potentials for four half cells. Study it and answer the questions that follow. The letters do not represent the actual symbols of the elements

 $E \theta \text{ volts}$

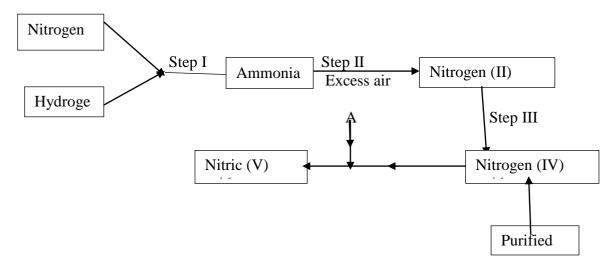
$$W_{2(g)} + 2e - \longrightarrow 2W -_{(aq)} + 0.54$$


$$X_{(aq)}^{2+} + 2e - \rightarrow X_{(s)} - 0.44$$

$$Y^{2+} + 2e - \rightarrow Y_{(s)} + 0.34$$

$$2Z (aq) + 2e - Z_{2(g)} \rightarrow Z_{2(g)} 0.00$$

i.	Explain why the Z half- cell has 0.00 voltage (1mk)
ii.	Identify the strongest reducing agent (1mk)
iii.	Write the equation for the reaction which takes place when solid X is added to the solution
	containing Y^{2+} ions (1mk)
iv.	Which two half-cells above would provide the highest voltage if connected? (1mk)
v.	Calculate the voltage generated by the half-cell you have mentioned in (IV) above
	(2mks)


(b) The following diagram shows the electrolysis of water that is slightly acidic study it and answer the questions that follows.

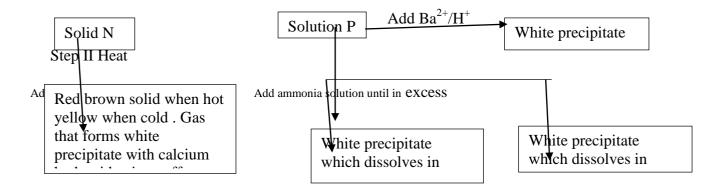
1.	Identify	(Imk)	
	Electrode K		
ii.	Why was it necessary to acidif	fy the water? (1mk)	
iii.	Explain why the water could n	not be acidified using hydrochloric acid if	f the desired
	products were oxygen and hyd	lrogen (1mk)	
iv.	During the electrolysis of aque	eous copper (II) sulphate 48,250 coulomb	os of electricity were
	used. Calculate the mass of co	opper that was deposited at the cathode	(2mks)

4. The diagram below represent two industrial processes; one leading to the manufacture of ammonia and the second leading to the manufacture of Nitric acid. Study it and answer the questions that follow.

(IF=96500columbs Cu=63.5)

a)	Descr	ibe one large scale source o	f	
	i.	Nitrogen	(1mk)	
	ii.	Hydrogen	(1mk)	
b)	Name	the catalyst required in		
	i.	Step II		
	ii.	Write the chemical equati	on for the reaction that takes place between am	monia and
		oxygen in the presence of	the catalyst you have named in b (i) above	(1mk)
c)	Ammo	onia reacts with nitric acid t	to form substance P.	
	i.	write the chemical equation	on for the formation of substance P (1mk)
	ii.	Give one possible use of s	substance P (1mk)	
d)	Give t	the general name given to the	ne process represented by Step I (1mk)	
e)	Nitrog	gen and hydrogen reacts acc	cording to the following equation at 450°c and 2	200
	atmos	spheres		
	$N_{2(g)}$	$+3H_{2(g)} \rightleftharpoons 2NH_{3(g)} \triangle H = -$	-92 <i>k]</i>	

		1.	State and explain I reduced (2n	now the yi nks)	eld of ammoni	a would be af	fected if the p	pressure 1s
					•••••		• • • • • • • • • • • • • • • •	•••••
		ii.	Name one use of r	nitric acid	apart from mak	ting substance	P named in	(c) above
			(1mk)					
				• • • • • • • • • • • • • • • • • • • •				
	f)		substance A and wi	rite an equ	ation to show h	now it reacts v	vith nitrogen	(IV) oxide to
			nitric (V) acid					
			ance A					
		Equat	ion					
		•••••						
		•••••						
		• • • • • •						
5.			agram in the space pred experimentally	orovided b (3mks		now the heat o	f combustion	n of ethanol
	(b) In collect	_	eriment to measure t	he heat of	combustion of	ethanol the fo	ollowing data	ı was
		ne of wa			450cm ³			
		-	ature of water ature of water		25°c 46.5°c			
	Mass	of ethar	nol + lamp before he		125.5g			
	Mass	of ethar	nol + lamp after heat	tıng	124.0g			


- i. calculate:
- Heat evolved during the experiment (Density of water $=1\,\mathrm{g/cm^3}$. Specific heat capacity of water =4.2KJ Kg⁻¹K⁻¹) (2mks)

 Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – Nairobi | Tel:+254202319748

	ii.	The molar heat of combustion obtained from an experiment like the one above is usually
		lower than the theoretical value. Explain (2mks)
	(c) The	e molar heat of combustion of hydrogen is given as -286KJmol ⁻¹
	i.	Write the thermochemical equation for the reaction above (1 ½ mk)
	ii.	Draw an energy level diagram for the reaction in c(i) above (2mks)
	d) (i) V	What is a fuel? (1mk)
	(ii) N	Name one environmental effect of using carbon and some of its compounds as fuels(½mk)
6.	(a)	
		Mixture M
(ii) F:14	nti on	of water
(ii) Filtra	uion	

Molar heat of combustion of ethanol (C=12, O=16, H=1) (2mks)

II.

The diagram above shows some reactions starting with mixture M. Study it and answer the questions that follow.

i.	Name the possible identity of			
	Solid N	(1mk)		
	Solid P	(1mk		

ii. Write the formula of the identity of white precipitate Q

iii. Describe the test that can be carried out to test for the presence of the cation in solid N and give the possible observations if the test is positive. Fill this information in the table below.

Test	Observation
1.	
(1mk)	(1mk)
2.	
	(1mk)
(1mk)	

	C4 - 4 - 41	·/·	D. (2)	1->			
a)	State the compos	ition of mixti	are P (2r	nk)			
			••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
b)	Write down the	ise of the foll	owing in the	he process a	ibove.		
Limest	one						
	one	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		

d)	Write down a chemical equation to show how iron is formed in the above set-up. (1mk)
e)	Name one use of iron (1mk)