\qquad

END TERM EXAMS-2019

PHYSICS PAPER 3 PRACTICAL FORM -3 TIME: $2 ½$ HOURS

INSTRUCTIONS TO CANDIDATES

1. You are provided with the following apparatus:
\checkmark A metre rule
\checkmark A 250 ml plastic beaker
$\checkmark 4$ pieces of cotton thread each 30 cm long
\checkmark A piece of cellotape
$\checkmark 100 \mathrm{ml}$ measuring cylinder
\checkmark Complete stand
\checkmark A 50 g mass
\checkmark Water in a beaker

Proceed

(a) Suspend the metre rule using the thread and ensure it balances horizontally (the point of balance should remain unchanged throughout the experiment.
(b) Suspend the empty plastic beaker at the 10 cm mark and hang the 50 g mass on the other side of the metre rule.

- Move the 50 g mass along the metre rule until the set-up balances horizontally as shown in the figure below.

Figure 1

(c) - Record the distances K and t

K \qquad cm
T \qquad cm
(Use the cellotape to fix the position of 50 g mass)

- The 50 g mass should remain at this position throughout the experiment.
(d) Using the measuring cylinder, measure $20 \mathrm{~cm}^{3}$ of water and pour it into the pastic beaker. Adjust the position of the beaker until the metre rule balances horizontally again. Record the distance K in table 1 below.
(e)Repeat the procedure (d) above for the other value of V shown.

Table 1

Volume, $\mathrm{V}\left(\mathrm{cm}^{3}\right)$	0	20	40	60	80	100	120
Distance, K, (cm)							
$\frac{1}{k}\left(\mathrm{~cm}^{-1}\right)$							

(f) Plot a graph of volume, V (y - axis) against $\frac{1}{k}$
(5 Marks)

(g) Determine the slope, S , of the graph.
(h) Given that $\mathrm{V}=1000\left(\frac{50 t}{d k}\right)-\frac{1000 \mathrm{~m}}{d}$

Use your graph to determine the values of
(i) $\mathrm{d}=$
(ii) $\mathrm{m}=$ (3 marks)

QUESTION 2

a) You require;

- Two dry cells (size D)
- A two cell holder
- A voltmeter
- An ammeter
- Mounted resistance wire on a mm scale
- 7 connecting wires (3 with crocodile clops)
- Vernier calipers (to be shared among five students

Proceed as follows

i) Set the circuit as shown in figure below

ii) With the crocodile clip at P (i.e. $\mathrm{L}=100 \mathrm{~cm}$) take the voltmeter reading V and the ammeter reading I. Repeat the procedure for values of $\mathrm{L}=90,70,50,40$ and 20 cm respectively Record your reading in table below

$\mathbf{L}(\mathbf{c m})$	$\mathbf{L}(\mathbf{m})$	V	I	V/I
$\mathbf{1 0 0}$				
$\mathbf{9 0}$				
$\mathbf{7 0}$				
$\mathbf{5 0}$				
$\mathbf{4 0}$				
$\mathbf{2 0}$				

iii) a) With the same apparatus design a circuit to determine the e.m.f of the two cells (1mk)
b) Measure the e.m.f of the cells \qquad (volts) (1mk)
iv) Plot a graph V/I (ohms) against L (metres)

v) Calculate the slope S of the graph
vi) Measure the diameter d of the mounted resistance wire
$\mathrm{d}=$ \qquad mm= \qquad .metres
vii) Given that $S=\pi \mathrm{d}^{2} / 4 \mathrm{~h}$. Calculate the value of h (2mks)

