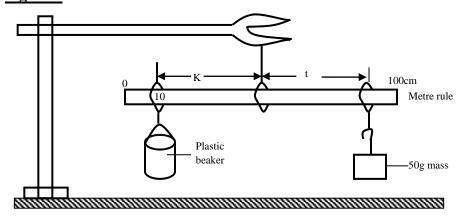
NAME	ADMNO	CLASS

END TERM EXAMS-2019

PHYSICS PAPER 3 PRACTICAL FORM -3 TIME: 2 1/2 HOURS


INSTRUCTIONS TO CANDIDATES

- 1. You are provided with the following apparatus:
 - ✓ A metre rule
 - ✓ A 250 ml plastic beaker
 - ✓ 4 pieces of cotton thread each 30cm long
 - ✓ A piece of cellotape
 - ✓ 100ml measuring cylinder
 - ✓ Complete stand
 - ✓ A 50g mass
 - ✓ Water in a beaker

Proceed

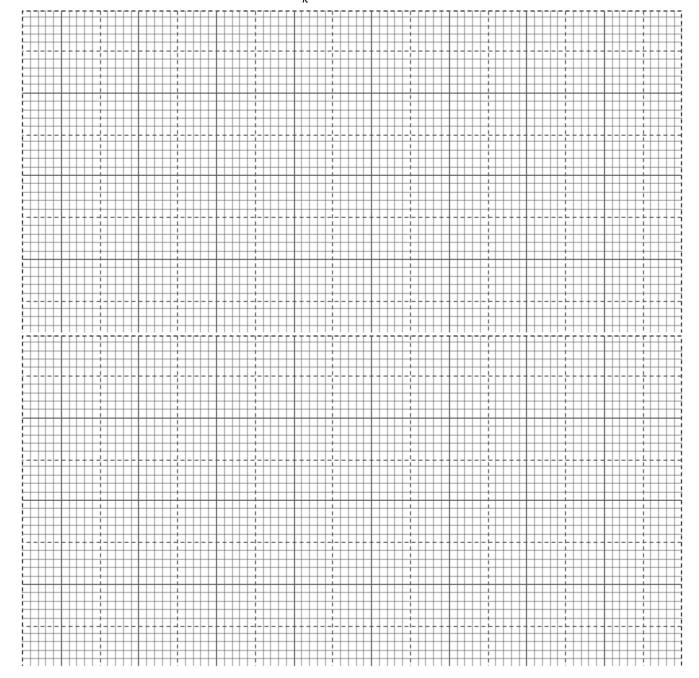
- (a) Suspend the metre rule using the thread and ensure it balances horizontally (the point of balance should remain unchanged throughout the experiment.
- (b) Suspend the empty plastic beaker at the 10cm mark and hang the 50g mass on the other side of the metre rule.
 - Move the 50g mass along the metre rule until the set-up balances horizontally as shown in the figure below.

Figure 1

(c) - Record the distances K and t

(1 mark)

K _____cm T cm


(Use the cellotape to fix the position of 50g mass)

- The 50g mass should remain at this position throughout the experiment.
- (d) Using the measuring cylinder, measure 20cm³ of water and pour it into the pastic beaker. Adjust the position of the beaker until the metre rule balances horizontally again. Record the distance K in table 1 below
- (e)Repeat the procedure (d) above for the other value of V shown.

(6 Marks)

Volume, V (cm ³)	0	20	40	60	80	100	120
Distance, K, (cm)							
$\frac{1}{k}$ (cm ⁻¹)							

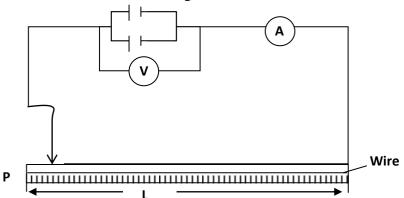
(f) Plot a graph of volume, V(y - axis) against $\frac{1}{k}$ (5 Marks)

(g) Determine the slope, S, of the graph.

(2 Marks)

(h) Given that $V = 1000 \left(\frac{50t}{dk}\right) - \frac{1000m}{d}$ Use your graph to determine the values of

(i) d = (3 marks)

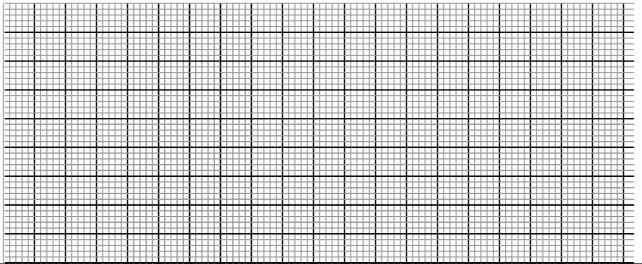

(ii) m =	(3 marks)

QUESTION 2

- a) You require;
- Two dry cells (size D)
- A two cell holder
- A voltmeter
- An ammeter
- Mounted resistance wire on a mm scale
- 7 connecting wires (3 with crocodile clops)
- Vernier calipers (to be shared among five students

Proceed as follows

i) Set the circuit as shown in figure below


ii) With the crocodile clip at P (i.e. L= 100cm) take the voltmeter reading V and the ammeter reading I. Repeat the procedure for values of L=90, 70, 50, 40 and 20cm respectively Record your reading in table below

L (cm)	L(m)	V	I	V/I	
100					
90					
70					
50					
40					
20					

iii) a) With the same apparatus design a circuit to determine the e.m.f of the two cells (1mk)

b) Measure the e.m.f of the cells _____ (volts) (1mk)

iv) Plot a graph V/I (ohms) against L (metres)

Compiled & distributed by Schools Net Kenya PtO. Fox 15509-00503. Mbagathi + Nainobi | Tel:+254202319748 E-mail infoshkenya@gmali.com | ORDER ANSWERS ONLINE at www.schoolsmetkenya.com

v)	Calculate the slope S of the graph	(3mks)
vi)	Measure the diameter d of the mounted resistance wire	(1mk)
	d=metres	
vii)	Given that $S = \pi d^2 /4h$. Calculate the value of h	(2mks)