NAM PHYS	IE:CLASS:ADM NO: SCIS PAPER 1 FORM 3 – TERM 3 2019 END OF YEAR EXAM TIME : 2 HOURS
INST	ON A (25MARKS) RUCTIONS. er all the questions in the spaces provided. State the reading shown on the scale of a vernier calipers in the diagram below. (1mk)
_	5 10
2.	State the reason why electricity transmission cables are left sagging between the pylons. (1mk)
3. mercı	The reading on a mercury barometer at the foot of a hill. Density of air = 1.25kg/m³, density of ury = 1.36 x 10 ⁴ kg/m³. (3mks)
4.	The figure below shows the displacement time graph for the motion of an object. Displacement(m) Time (s)
	h the velocity time graph for the object. (2mks)
5.	State two factors that would raise the boiling point of water. (2mks)

6. burett	The level of water in a burette is 25ce, what would be its new reading.	cm ³ . 40 drops e	ach of volume 0.05cm ³ are add (2mks)	ded to the
7. replace	Explain how the efficiency of a vacuued with a double-walled metal surface		ected if the double-walled glass (2mks)	s surface is
8. does it	A body moving at 50m/s decelerates cover from the time it starts to dece	-		hat distance (3mks)
9.	Sketch a graph of pressure versus vo	olume for an ide	eal gas at constant temperatur	re.(3mks)
	Three identical springs A, B, and C a eight of the horizontal bar is 2.5N, detension of 2cm.	• •	_	

11.	State the property of Freon that makes it useful as a refrigerant liquid.	(1mk)
12. spinni	The diagram below shows a spinning ball as it moves through air in the Direction of ng ball movement	direction shown.
	the streamlines of air around the ball and show the direction in which it s is created. (2mks)	spins such that an upward
13.	State the law of conservation of energy.	(1mk)
SECTI (14.	ON B (55 MARKS) State one renewable source of energy.	(1mk)
	electric crane lifts a load of 2000kg through a vertical distance of 3m in 6 work done.	seconds. Determine: (2mks)
ii. The	power developed by the crane.	(2mks)
iii. The	e efficiency of the crane if operated by an electric meter rated 12.5kw.	(2mks)
-	ulley system has two pulleys on the lower block and one pulley on the up n showing the direction of the robe, the load and the effort. (3mks)	per block. Sketch the

15.	Define the term friction.	(1r	mk)
b. A sp wide t	pherical steel ball is released from rest just above the sube.	surface of a column of oil which	is in a long
i.	State three forces affecting the movement of the ba	ill as it falls in the oil. (3mks)	
ii.	Explain which of the forces in b (i) above varies as th	ne ball falls. (1mk)	
iii.	What is the net force acting on the ball that is movin	ng at terminal velocity?(1mk)	
iv. mome	Sketch a graph to show the variation of resultant for ent it was released. (2mks)	ce on the ball with velocity from	n the
	c. State the principle of movements.	(1mk)	
i.	The diagram below shows a uniform metre rule in ed	quilibrium under the forces show	vn.

ii. Determine the weight of the metre rule.

16. A 4kg mass is receiving heat at a rate of 100KJ per minute and its temperature at various times recorded as follows.

Temp (°C)	230	250	270	270	270	270	310	350	390	390	390
Time	0	1	2	6	9	13	18	23	28	29	30
t											
(min)											

a. Plot a graph of temperature against time.

(5mks)

(3mks)

(3mks)

- b. Use you graph to determine:
- i. Specific heat capacity of the substance in solid state.

ii. Specific heat capacity in its liquid state.

(3mks)

iii. Its melting point

(1mk)

iv.	Its boiling point	(1mk)	
v.	Specific latent heat of fusion.	(2mks)	
17. under i.	In an experiment to demonstrate Br a microscope. State and explain the observation m		out in a smoke cell and observed (2mks)
ii.	Give a reason for using small particle	es like smoke particles in the	experiment. (1mk)
iii.	What observation would be made if	the temperature of the smok	ce cell is raised? (1mk)
	oil drop of average diameter 0.7mm s e of water in a trough. Calculate the thickness of the molec		ch of diameter 75cm on the (3mks)
ii.	State any two sources of error in b (i) above.	(2mks)
18. fall by	At 30°C , the pressure of a gas is 100 20cm of mercury. Give the temperatu		

b. A hole of area 4.0cm^2 at the bottom of a tank 5m deep is closed with a cork. Determine the force on the cork when the tank is filled with water. (g=10m/s ² , density of water = 1000kg/m ³).(4mks)
c. A measuring cylinder of height 25cm is filled to a height at 15cm with water and the rest is occupied by kerosene. Determine the pressure acting on its base. (Density of water = 1g/cm³, density of kerosene = 0.8g/cm³ atmospheric pressure = 103,000 Pa) (3mks)