FORM TWO MATHEMATICS END OF TERM 3 EXAMS - 2019 TIME: 2 HOURS

Attempt all the questions in the spaces provided.

1. Two spheres have surface areas of $36 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$. If the volume of the smaller sphere is $20.2 \mathrm{~cm}^{3}$
calculate the volume of the larger one. (3 mks)
2. Using mathematical tables, evaluate:

$$
\frac{5467 \times 0.3278}{\sqrt[5]{0.0894}}
$$

3. Simplify the expression below

$$
6 b+2 a b-3 a-a^{2}
$$

4. If $4^{3 y-4 x}=64$ and $3^{y} \div 9^{x}=1$, solve for x and Y.
5. A straight line passes through point $\mathrm{B}(-2,1)$ and $\mathrm{C}(6,3)$. Find the equation of a line parallel to BC and passes through a point $\mathrm{D}(2,4)$.
(3 mks)
6. In the figure below, angle $\mathrm{CAB}=27^{\circ}$, angle $\mathrm{ABD}=65^{\circ}$ and angle $\mathrm{DB}=39^{\circ}$. Find the size of angle

CBD.
(3 mks)

7. Common salt has a density of $2.2 \mathrm{~g} / \mathrm{cm}^{3}$ while sand has a density of $3.2 \mathrm{~g} / \mathrm{cm} 3$. If 0.8 kg of salt is mixed with 1.5 kg of sand, find the density of the mixture.
8. The volume of water in a measuring cylinder is $25.2 \mathrm{~cm}^{3}$. After a solid metal sphere is immersed into it, the measuring cylinder reads $29.4 \mathrm{~cm}^{3}$. Calculate the radius of the sphere. (3 mks)
9. $\operatorname{Cos} \Theta=\underline{1}$ where Θ is an acute angle. Without using mathematical tables, find; $\sqrt{3}$
(a) $\operatorname{Tan}\left(90^{\circ}-\Theta\right)$
(b) $\operatorname{Sin} \Theta$ in the form $\frac{\sqrt{a}}{\sqrt{b}}$ where a and b are integers. (2 mks)
10. The shaded region in the figure below shows the area swept out on a flat windscreen by a wiper.

Calculate the area of this region.
10.

11. A triangular flower garden measures $10 \mathrm{~m}, 15 \mathrm{~m}$ and 24 m . Find the area of the garden. (3 mks)
12. Triangle OAB is such that $\mathrm{OA}=\mathrm{a}$ and $\mathrm{OB}=\mathrm{b}$. C lies on OB such that $\mathrm{OC}: \mathrm{CB}=1: 1$. D lies on AB such that $\mathrm{AD}: \mathrm{DB}=1: 1$ and E lies on OA such that $\mathrm{OA}: \mathrm{AE}=3: 1$. Find CD in terms of a and b. (3 mks)
13. Giving reasons, find the angle marked b , given that EF is parallel to AC . (3 mks)

SECTION B: (30 MARKS)

Answer any three questions in this section.

14. The height (in cm) of some seedlings in a nursery are recorded in the table below.

Height (cm)	$1.0-1.4$	$1.5-1.9$	$2.0-2.4$	$2.5-2.9$
No. of seedlings	2	6	4	8

(a) State the median class (1 mk)
(b) Calculate the mean height of the seedlings in the nursery.
(c) On the grid provided, draw a histogram and a frequency polygon to represent the information.
15. On the graph paper provided, plot the triangle whose co-ordinates are $\mathrm{A}(1,3) \mathrm{B}(2,1)$ and $\mathrm{C}(3,4)$.
(a) On the same grid, draw;
(i) $\mathrm{A}^{\prime} \mathrm{B}$ ' C ' the image of ABC under an enlargement, centre $(0,0)$, scale factor -1 and state its co-ordinates. (3 mks)
(ii) $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ the image of $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ under a rotation of $+90^{\circ}$ about origin. State the coordinates of $A " B " C "$.
(3 mks)
 coordinates (3 mks)
16. Three warships P, Q and R leave port X at 9.00 a.m. Ship P sails at a steady speed on a bearing of $070^{\circ}, 100 \mathrm{~km}$ from port X while ship Q sails on a bearing of $320^{\circ}, 80 \mathrm{~km}$ from port X. Ship R is on a bearing of 1500 from port X and due south of ship P .
(a) Construct a scale drawing to show the position of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and X .
(b) Use the scale drawing to determine:
(i) The distance and bearing of ship P from ship Q. (2 mks)
(ii) The distance of ship R from port X .
(iii) The distance of ship R from ship P.
(2 mks)
17. (a) Use a ruler and a pair of compasses only to construct triangle ABC such that $\mathrm{AB}=$ $2.5 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}$ and $\mathrm{AC}=5.5 \mathrm{~cm}$. Measure $<\mathrm{ABC}$.
(3 mks)
(b) Drop a perpendicular from A to a point T on CB produced. Measure the length AT . (3 mks)
(c) With BT as the base, calculate the area of triangle ABT and triangle ACT . (4 mks)
18. The circle in figure below has a radius Xcm and centre O . Minor arc MNP subtends an angle of 156°
at the centre of the circle. Sector MNP has an area of $417.1 \mathrm{~cm}^{2}$

(a) Taking $\pi=\frac{22}{7}$, find x.
(3 mks)
(b) The major sector MQP is obtained from the circle and folded into a cone. Find:
(i) The radius of the cone's base.
(2 mks)
(ii) The height of the cone.
(iii) The surface area of the cone.
(2 mks)

