| Name:     | Index no         |
|-----------|------------------|
| School:   | Candidate's sign |
| Date:     |                  |
| 233/3     |                  |
| CHEMISTRY |                  |

# TERM 2 2019

TIME: 2 1/4 HOURS

#### **INSTRUCTIONS TO CANDIDATES:**

- (a) Write your name and index number in the spaces provided.
- (b) Sign and write the date of examination in the spaces provided
- (c) Answer ALL the questions in the spaces provided in the question paper
- (d) You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2 ½ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you may need.
- (e) All working MUST be clearly shown where necessary.
- (f) Mathematical tables and electronic calculators may be used.
- (g) Candidates should check the questions to ascertain that all pages are printed as indicated and that no questions are missing.

## For Examiner's Use Only:

| Question    | Maximum score | Candidates score |
|-------------|---------------|------------------|
| 1           | 22            |                  |
| 2           | 8             |                  |
| 3           | 10            |                  |
| Total score | 40            |                  |

### 1. You are provided with:

- A monobasic acid HA, solution J.
- Sodium carbonate solution, solution Q, containing 1.325g in 250cm<sup>3</sup> of solution.
- Solution R, containing 15.75g of M(OH).8H<sub>2</sub>O per litre.
- -Screened methyl orange indicator.

#### You are required to:

- Standardize solution J.
- Determine the relative atomic mass of element M in M (OH)<sub>2</sub>. 8H<sub>2</sub>O.

#### Procedure 1

Fill the burette with solution J. Pipette  $25\text{cm}^3$  of solution Q into a clean 250ml conical flask and add 2-3 drops of screened methyl orange indicator. Titrate this solution with the solution in the burette and record your results in table 1 below. Repeat this procedure and complete the table. **Retain solution J in the burette for use in procedure II**.

Table 1

| Titre                                      | I | II | III |
|--------------------------------------------|---|----|-----|
| Final burette reading (cm³)                |   |    |     |
|                                            |   |    |     |
| Initial burette reading (cm <sup>3</sup> ) |   |    |     |
| Volume of J used (cm <sup>3</sup> )        |   |    |     |

(4 marks)

a) Calculate the average volume of solution J used.

(1 mark)

| b) Determine the concentration of solution Q in moles per litre (Na=23, C=12, O=16                                                                                                                                                                                                                                                                                                                | (1 mark)                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| c) (i) Determine the number of moles of the monobasic acid solution, HA, that are in the                                                                                                                                                                                                                                                                                                          |                             |
| averaged value calculated in (b) above.                                                                                                                                                                                                                                                                                                                                                           | (1 mark)                    |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| (ii) Determine the concentration of solution J in moles per litre.                                                                                                                                                                                                                                                                                                                                | (1 mark                     |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Procedure 2                                                                                                                                                                                                                                                                                                                                                                                       |                             |
| - Using a 25cm³ measuring cylinder, transfer 25cm³ of solution R into a clean 250ml conical a 100ml measuring cylinder, transfer 75cm³ of solution Q into the flask with solution R. Boil for about 5 minutes. After cooling filter into a conical flask and transfer the filtrate into a comeasuring cylinder and add distilled water to make exactly 100cm³ of solution. Label this solution S. | l the mixture<br>lean 100ml |
| Pipette 25cm <sup>3</sup> of solution S into a conical flask and titrate it with solution J using 2 drops of                                                                                                                                                                                                                                                                                      | screened                    |

methyl orange indicator. Record your results in table 2 below. Repeat this to complete the table.

Table 2

Titre

|           | rillal burette readilig (dili )              |              |      |               |
|-----------|----------------------------------------------|--------------|------|---------------|
|           | Initial burette reading (cm <sup>3</sup> )   |              |      |               |
|           | Volume of J used (cm³)                       |              |      |               |
|           |                                              |              |      | <br>(4 marks) |
| d) Calc   | ulate the average volume of solu             | tion J used. |      | (1mark)       |
|           |                                              |              |      |               |
|           |                                              |              |      |               |
| a) Data   | ermine the number of moles of:               |              |      |               |
| e, bete   | ermine the number of moles of.               |              |      |               |
| (i) The   | monobasic acid, HA, in the avera             | ge volume.   |      | (1 mark)      |
|           |                                              |              | <br> |               |
|           |                                              |              | <br> |               |
|           |                                              |              | <br> |               |
| (ii) Sod  | ium carbonate in 25cm <sup>3</sup> of soluti | on S.        |      | (1 mark)      |
|           |                                              |              |      |               |
| ••••••    |                                              |              | <br> |               |
|           |                                              |              | <br> |               |
|           | _                                            |              | <br> |               |
| (iii) Soc | lium carbonate in 75cm³ of solut             | ion S.       |      | (1 mark)      |

Ш

Ш

| (ii) the relative formula mass of M(OH) <sub>2</sub> .8H <sub>2</sub> O.                     | (1 mark)  |
|----------------------------------------------------------------------------------------------|-----------|
| (i) the concentration of solution R in moles per litre.                                      | (IIIIaik) |
| f) Determine  (i) the concentration of solution R in moles per litro                         | (1mark)   |
|                                                                                              |           |
| (1 mole of M (OH) <sub>2</sub> . 8H <sub>2</sub> O reacts with one mole of sodium carbonate) |           |
| vi) M (OH) <sub>2</sub> . 8H <sub>2</sub> O in 25cm <sup>3</sup> of solution R.              | (1 mark)  |
| v) Sodium carbonate that reacted with solution R.                                            | (1 mark)  |
|                                                                                              |           |
| iv) Sodium carbonate in the original 75cm <sup>3</sup> of solution S.                        | (1 mark)  |
|                                                                                              |           |
|                                                                                              |           |

| (iii) the relative atomic mass of M (O=16.0, H=1.0)                                                                                                                                       | (1mark)                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 2. You are provided with:                                                                                                                                                                 |                                                                                  |
| Solid P, 2.0 g of a dibasic acid $H_2X$ .  You are required to determine the molar heat of solu  PROCEDURE                                                                                | ntion of solid P.                                                                |
| Place 30cm <sup>3</sup> of distilled water into a 100ml beaker. Me and record it in the table below. Add all the solid P at thermometer until all the solid dissolves. Measure the table. | once and stir the mixture carefully with the                                     |
| Final temperature (°C)                                                                                                                                                                    |                                                                                  |
| <ul> <li>Initial temperature (°C)</li> <li>a) Determine the change in temperature, ΔT</li> </ul>                                                                                          | (3 mks)<br>(1 mk)                                                                |
| b) Calculate the:  i) heat change when H <sub>2</sub> X dissolve the solution is 4.2 Jg <sup>-1o</sup> C <sup>-1</sup> and o                                                              | s in water. (Assume the heat capacity of density is 1g/cm <sup>3</sup> ) (2 mks) |

|          | H <sub>2</sub> X is 126)                                  | (1mk)                                  |
|----------|-----------------------------------------------------------|----------------------------------------|
|          | iii) molar heat of solution, $\Delta H$ , of              | The acid $H_2X$ . (1mk)                |
|          | re provided with solid <b>G</b> .Place all solid <b>G</b> |                                        |
| shake.D  | Divide the resulting solution into three p                | ortions.                               |
|          | Inferences                                                | Observations                           |
|          |                                                           |                                        |
|          | (½ mk)                                                    | (½ mk)                                 |
| i)To the | first portion add drops of 2M sodium h                    |                                        |
|          | Inferences                                                | Observations                           |
|          | (½ mk)                                                    | (½ mk)                                 |
|          | (,)                                                       | (,2)                                   |
|          | e second portion dip a metallic spatula in ninous flame.  | the solution and burn it directly on a |

number of moles of the acid that were used. (Relative formula mass of

ii)

| Inferences | Observations |
|------------|--------------|
|            |              |
|            |              |
|            |              |
|            |              |
|            |              |
| (½ mk)     | (½ mk)       |

iii)To the third portion add three drops of barium nitrate solution followed by 2cm<sup>3</sup> of 2M hydrochloric acid.

| Inferences | Observations |
|------------|--------------|
|            |              |
|            |              |
|            |              |
|            |              |
| (½ mk)     | (½ mk)       |

iv) To the fourth portion add three drops of acidified potassium dichromate (VI) solution.

| Inferences | Observations |
|------------|--------------|
|            |              |
|            |              |
|            |              |
|            |              |
|            |              |
| (½ mk)     | (½ mk)       |

b)You are provided with solid **F.** Carry out the tests below and record your observations and inferences in the spaces provided

(i) Using a metallic spatula, heat half of solid F in a non-luminous bunsen burner flame .

| Inferences | Observations |  |
|------------|--------------|--|
|            |              |  |
|            |              |  |
|            |              |  |
|            |              |  |
| (½ mk)     | (½ mk)       |  |

(ii) Put a half spatula endful of solid **F** into a boiling tube. Add about 10cm<sup>3</sup> of distilled water and shake.

| Inferences | Observations |
|------------|--------------|
|            |              |
|            |              |
|            |              |
|            |              |
| (½ mk)     | (½ mk)       |

Divide the resulting solution from a(ii) above into two portions

(i) To the first portion, 2 -3 drops of universal indicator and determine its pH.

| Inferences | 0bservations |
|------------|--------------|
|            |              |
|            |              |
|            |              |
|            |              |
| (½ mk)     | (½ mk)       |

(ii) To the second portion, add two drop of acidified potassium Manganate (VII) solution and shake.

| Inferences | Observations |
|------------|--------------|
|            |              |
|            |              |

| (½ mk) | (½ mk) |
|--------|--------|

(c) Put half spatula endful of solid **F** into a boiling tube and add 5 drops of ethanol followed by 2 drops of concentrated sulphuric (VI) acid.warm the mixture.

| Inferences | Observations |
|------------|--------------|
|            |              |
|            |              |
|            |              |
|            |              |
| (½ mk)     | (½ mk)       |