NAME	ADM NO	CLASS
SIGNATURE	DATE	

BIOLOGY PAPER 2 TERM 2 2019 (THEORY) TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:-

- Write your **name** and **adm number** in the spaces provided above.
- This paper consists of **two** sections; **A** and **B**.
- Answer **all** the questions in Section **A** in the spaces provided.
- In section **B**, answer question **6** (**compulsory**) and either question **7** or **8** in the spaces provided after question 8.

For Examiner's Use Only:

Section	Question	Maximum score	Candidates score
A	1	8	
	2	8	
	3	8	
	4	8	
	5	8	
В	6	20	
	7 or	20	
	8	20	
TOTA	L SCORE	80	

This paper consists of 10 printed pages. Candidates should check to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (40 Marks) Answer all questions in this section in the spaces provided.

- 1. In human beings, a **downward pointed frontal hairline** ("windows peak") is a heritable trait. A person with windows peak always has at least one parent who has this trait; where as persons with **frontal hairline** may occur in families in which one or even both parents have windows peak. Using **W** and **w** to symbolize genes for this trait
- (a) Determine the F1 generation if a homozygous windows peak male parent is married to a homozygous frontal hairlined female parent (4mks)

(b) State two causes of variations	(1mk)
c) Name two sex linked genetic disorders affecting human females and males	(2mks)

2. The diagram below shows an organism obtained from an aqua	tic ecosystem
Red eyesp Nucleus	oot
(a) State the kingdom in which the organism belongs.	(1mk)
(b) Name the parts labeled	(1
В	
В	
Y	(1
Y	
Y	
Y (c) State the functions of the following parts	
Y (c) State the functions of the following parts A	
Y (c) State the functions of the following parts	(1
Y (c) State the functions of the following parts A	

3a) The diagram below shows some of the features of a synovial joint. Study the diagram carefully and answer the questions that follow.

(a) Name the type of synovial joint.	(1 mark)
(b) Name the parts labeled J, and L	(2 marks)
J	
L	
(c) State two roles of the part labeled L.	(2 marks)
(d) Suggest one advantage of this type of joint.	(1 mark)
b) State how the following tissues are adapted to provide mechani) Parenchyma	nical support in plants (2mks)
ii) Collenchyma	

.....

4. A student set up an experiment using soaked and dry seeds as shown below

	a) State the objective of this experiment	(11111)
t	State the observations made in each of the flask after 24 hours	(2mks
	e) Account for the observation made in (b) above	(2mks
Ċ	d) Suggest why vacuum flasks were used in this experiment	(1mk)
e	e) What alteration would you make in the set-up to make the results more re	eliable (1mk

f) Why should the seeds be washed with antiseptic/10% formalin?	(1mk)
	• • • • • • •
5 a) Explain how the following meristematic tissues contribute to growth of higher plants	3
i) Vascular cambium (2mks	
	• • • • • • • • • • • • • • • • • • • •
ii) Cork Cambium	(2mks)
	• • • • • • • • • • •
b) The diagram below shows a life cycle of a cockroach	
b) The diagram below shows a me cycle of a cockroach	
Egg Incubation period	
Adult Young Nymph	
First week	
Second week Old Nymph First week	
a) Name the hormone that would be at high concentration during.	
(i) First week (1mk)	
(ii) Second week	(1mk)
b) Name the structure that produces hormone in a (ii) above	(1mk)
c) Name the series of stages through which the nymph undergoes to reach adult stage	(1mks)

.....

SECTION B (40 Marks)

Answer question 6 (Compulsory) and either question 7 or 8 in the spaces provided.

6. The menstrual cycle is a sequence of events repeated monthly in the female production system. The table below shows the concentration of oestrogen and progesterone hormones and body temperatures of female against time.

Time in days	Oestrogen mg/100cm	Progesterone mg/100cm ³ of blood	Temperature in 0°c
	of blood		
1	20	0	36.4
2	20.5	0	36.6
3	25	0	36.7
4	27.5	0	36.8
5	30	0	36.7
6	32.5	0	36.6
7	35	0	36.8
8	40	0	36.7
9	48	0	36.6
10	56	0	36.8
11	64	0	36.7
12	72	0	36.6
13	80	0	36.4
14	170	20	36.3
15	140	50	36.6
16	80	80	37.0
17	70	130	37.2
18	65	170	37.0
19	60	160	37.1
20	65	150	37.15
21	130	130	37.2
22	140	110	37.1
23	130	90	37.0
24	100	70	37.1
25	80	50	37.2
26	60	20	37.0
27	20	0	36.4

a). Using the same axis draw graphs of oestrogen and progesterone against time/days (8mks)

b) State the possible e			g the first week?	(1 mark)
		he ovary between d	ay 1 and day 13.	(2 marks)
(2 marks)			oncentration between d	
e) Account for the cha	nge in temperatu	are between day 14	and 17.	(1 mark)
f) Account for the char	nge of the curve	of progesterone bet	ween day 19 and 27.	(2marks)
a) State the i	Cunction of the for Ovary	ollowing.		(1mark)
(ii)	Progesterone			(1 mark)
(iii)	Oestrogen			(1 mark)

 7 a) Describe how the following evidences support the theory of organic evolution distribution, fossil records and comparative anatomy b) Explain tropic responses in plants and their survival values 8 a) Describe the structural adaptations of mammalian heart to its Functions b) Explain the role of osmosis in organisms 	n: geographical (10mks) (10mks) (10mks) (10mks)
	• • • • • • • • • • • • • • • • • • • •