NAME	INDEX NO
DATE	CLASS

TERM 1

KENYA CERTIFICATE OF SECONDARY EDUCATION

CHEMISTRY PAPER 3 (PRACTICAL) 2 1/4 HRS

INSTRUCTIONS TO CANDIDATES

- (a) Answer all the questions in the spaces provided in the question paper.
- (b) You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2 ¼ hrs allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- (c) All working must be clearly shown where necessary.

FOR EXAMINER'S USE ONLY.

QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
1	13	
2	13	
3	14	
TOTAL SCORE	40	

You are provided with

- Anhydrous sodium carbonate solid x.
- Distilled water.
- 0.2m Hydrochloric acid solution A.

You are required to determine molar heat of solution of solid x.

PROCEDURE I

- i. Place 50.0ml of water in 250ml plastic beaker.
- ii. Note the temperature of the water and record it in the table I below.
- iii. Add all the solid X provided to the water in the beaker, stir gently with the thermometer and record the final temperature of the solution in the table I below. Keep the resulting solution for procedure 2.

7	$\Gamma \Lambda$	BI	Œ	1

Final temperature (⁰ C)	
Initial temperature (⁰ C)	
Change in temperature (⁰ C)	
	(2 mks)

(a) What is the enthalpy change for the reaction? (Assume the density of solution is $1g/cm^3$, and specific heat capacity is $4.2 \text{ Jg}^{-1} \text{ K}^{-1}$). (2 mks)

PROCEDURE II

Transfer the contents of the beaker into 250ml volumetric flask. Rinse both the beaker and the thermometer with distilled water and ass this water into the solution in the volumetric flask. Add more water to make up to the mark. Label this solution as solution X. fill the burette with solution A. Using a pipette place 25.0ml of solution X into a conical flask. Add 3 drops of methyl orange indicator and titrate with solution A. record your readings in table II below. Repeat the titration two more times and complete the table.

TABLE II

Experiment	I			
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of solution A used (cm ³)				
			(3 mks)	
(b) Calculate average volume of so	olution A used.		(1 mk)	
(c) the number of moles of solution	n A used		(1 mk)	
(c) the number of moles of solution	111 usea.		(Tillk)	
(d) The number of moles of solution	on X that reacted v	with the number of mol	es of solution A in	(c) above.
		(1 mk)		

(e) The number of me	oles o	f solid 2	X used in	n proced	dure I.				(1 mk)		
(f) Molar heat of solu	ition c	of anhyc	lrous so	dium ca	rbonat	e.			(2 mks)	ı	
2. You are provided vA solution of sodiumA solution of sulphone	m hyd										
You are required to d	leterm	ine the	concent	ration o	f the a	lkali usin	g the fo	llowing p	procedur	e.	
PROCEDURE: (i) Place 40cm³ of so (ii) Measure 60cm³ of (iii) Determine the trecord it in the table of (iv) At 2 ½ minutes, temperature in the 3 rd	of sulp emper below place	huric (vature o the 600	ri) acid s f sodiur	solution n hydro	oxide s	solution a	t half a	minute			
(v) Complete the table	le belo	ow.									
Time in minutes	0	1/2	1	1 1/2	2	2 ½	3	3 ½	4		
Temperature in ⁰ C						X					
										_	
Time in minutes	4 !	/2	5	5 1/2		6	6 1/2	7			

(3 mks)

Temperature in ${}^{0}C$

(a) Plot a graph of temperature against time.	(3 mks)
(b) From the graph, determine the highest temperature change.	(1 mk)
(c) Determine the heat evolved in this experiment (Density of solution = $4.2 \text{ Jg}^{-1} \text{ K}^{-1}$)	ution = 1 g/cm ³ specific heat capacity of (2 mks)
(d) Given that the molar heat of neutralization is 56KJ/mole, det hydroxide used in the neutralization reaction above. (2	termine the number of moles of sodium mks)
(e) Determine the molarity of sodium hydroxide.	(2 mks)

3. You are provided with solid K. carry out the following tests and write your observations and inferences in the spaces provided.

	TEST	OBSERVATION	INFERENCE
(a)	Place a spatula full of sample K in a		
	clean dry test tube. Heat gently and		
	then strongly.	(1 mk)	(1 mk)

(b)	Put the remaining solid K in a boiling		
	tube. Add about 8cm ³ of distilled		
	water. Shake well and divide the		
	solution into 3 portions.		
(i)	To the first portion add 3 drops of	/	
	sodium hydroxide solution and then		
	excess.	(1 mk)	(1 mk)
(ii)	To the second portion add 3 drops of		
	ammonia solution and then excess.		
		(1 mk)	(1 mk)
(iii)	To the third portion add 3 drops of		
	Barium nitrate followed by 3 drops of		
	nitric acid.	(1 mk)	(1 mk)
(c)	You are provided with solid P. carry out	the tests below and record y	our observations and
	inferences.		
(i)	Place half spatula of solid P in a non-		
	luminous flame of a Bunsen burner.		

		(1 mk)	(1 mk)
(ii)	Dissolve the remaining solid in water		
	and divide into two portions		
(a)	Add 3 drops of universal indicator to		
	the 1 st portion and determine the PH of		
	the solution.	(1 mk)	(1 mk)
(b)	To the 2 nd portion add a little sodium		
	hydrogen carbonate		
		(1 mk)	(1 mk)