FORM 3 MATHEMATICS PAPER 1
 TERM 1 FORM THREE

121/1

INSTRUCTIONS

1: This paper consists of two sections 1 and 2 . Answer all the questions in section 1 and any $\mathbf{5}$ questions in section 2.
2: KNEC mathematical tables and electronic non- programmable calculators may be used where necessary. 3: Answer all the questions in the spaces provided

Section 2	17	18	19	20	21	23	24	total	

Grand total

SECTION 1

Answer all questions in this section
1.Find without using tables or a calculator the value of
(3mk|)

$$
\frac{1.33 \times 0.51}{0.19 \times 0.0017}
$$

2. The ratio of the size of the exterior angle to the interior angle of a regular polygon is $1: 3$. Determine the number of sides of the polygon and name it.
3. Given that $2 x^{2}-k x+18$ is a perfect square, find k and hence solve the equation $2 x^{2}-k x+18=0$ by factorization. (4mk)
4. Work out using logarithms to 4 s.f

$$
\begin{aligned}
& \sqrt{(6.225 \log 1.001)} \\
& (56.7 \times 0.031)^{3}
\end{aligned}
$$

5. Mr. Kanja,Miss Kanene and Mrs Nyaga have to mark a form three math contest for 160 students. They take $5 \mathrm{mins}, 4 \mathrm{mins}$, and 12 mins respectively to mark a script. If they all start to mark at 9.00 am non-stop, what is the shortest time they can take to complete the marking?
(3mk)
6. Jackie takes 5minutes to run a distance of 1 km in a race. Express her speed in
a) $\mathrm{km} / \mathrm{hr}$
b) m / s
7. Use reciprocal tables to find the value of f given that $\frac{1}{f}=\frac{1}{11}+\frac{2}{13}$
8. A man left $\frac{1}{5}$ of his estate in Kerugoya to his wife and $\frac{1}{3}$ to each of his two sons. The remainder was to be shared equally among his six brothers. If the estate was worth sh 3456000 , how much did each of those people get?
9. A distance of 12 km is represented by a length of 4 cm on a map. Given that the scale of the map is $1: \mathrm{n}$, find the
a) value of n
b) actual area in hectares of a field on the map with an area of $32 \mathrm{~cm}^{2}$
10. Solve the equation $1 / 3(x+4)-1 / 2(2 x-4)=2$
11. The sides of a right angled triangle measured to the nearest cm are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm Determine the
a) limits within which the measured dimensions lie
b) percentage error in the area of the triangle.
12. Form a quadratic equation in the form $a x^{2}+b x+c=0$ whose roots are b and twice the negative reciprocal of b. (3mk)
13. The coordinates of points A and B are $A(2,3) \cdot B(4,-5) . M$ is the midpoint of vector $A B$. Determine the coordinates of point M and the magnitude of vector BM .
(3mk)
14. The equation of line L is $y=3 x-4$ and is perpendicular to line H. They cross each other at the y-intercept of line L . Find the equation of line H .
(3mk)
15. In a circle radius 10 cm , an arc $P Q$ subtends an angle of $\frac{5}{12} \pi$ radians at the centre of the circle. Calculate the radius of another circle whose circumference is equal to the length of arc PQ
(4mk)
16. Solve for a in $3^{2 a+3}=2187$

SECTION 2

Answer any 5 questions in this section
17. Four towns are situated in such a way that town Q is 500 km on a bearing of 120° from P . Town R is 240 km on a bearing of 210° from town P , while town S is due north of town Q and due east of town P .
a) Draw a sketch diagram showing the relative positions of P, Q, R and S.
(2mk)
b) Find by calculation
i) the distance QR
(2mk)
ii)the distance QS
(2mk)
iii)the angle PRQ
(2mk)
iv) area of triangle PQS
18. a) Represent the following inequalities graphically by shading the unwanted region $x \geq 0, y \geq 0, x+y \geq 5, x+y \leq 10, y \leq 7, x \leq 7$
b) write down the coordinates of one point that is inside the wanted region (1mk)
c) Name the figure formed by the unshaded region
d)measure and find the sum of all the angles in the figure formed in c) above.
19. In the figure below, O is the centre of the circle and $\left\llcorner E A D=40^{\circ},\left\llcorner B C D=118^{\circ}\right.\right.$

b) reflex $\llcorner E O D$
c) $\llcorner\mathrm{EBD}$
d) $\llcorner\mathrm{EAB}$
e) \llcorner DAB
(2mk)
20. The marks scored in a form three maths exam were recorded as follows

6970724052602231785328676354574847565562
7538374462645839454865508546475735345864
6237414236548248535756725648445578595045
a) Make a grouped frequency table with classes $20-29,30-39,40-49$,etc
b) What is the modal distribution of the test
c) Calculate the mean of the data
d) Calculate the median mark
21. The velocity(v)of a vehicle measured at intervals of time(t) were recorded as follows

$\mathrm{t}(\mathrm{s})$	0	2	4	6	8	10	12
$\mathrm{v}(\mathrm{m} / \mathrm{s})$	0	20	40	40	30	8	0

a) Represent this motion on a graph
b) Calculate the acceleration
c) Calculate the total distance travelled by the vehicle
d)Calculate the average velocity of the vehicle
22. A wooden stool is in the form of a frustum of a cone with slant edge 40 cm ,top diameter 30 cm and bottom diameter 50 cm .
a) calculate the perpendicular height of the stool
b)calculate the total surface area of the stool in terms of π
c)calculate the volume of wood used to make the stool in terms of π
d)given that the density of the wood used to make the stool is $0.8 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the mass of the stool in kg
23. Using ruler and compasses only,
a) construct triangle ABC in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and angle $\mathrm{ABC}=120^{\circ}$.
b)measure angle ACB
(1mk)
c)drop a perpendicular from C to cut AB produced at P . Measure CP .
(2mk)
d)hence calculate area of triangle ABC to 1 dp
e)calculate the radius of a circle that passes through the vertices of triangle ABC
(2mk)
24. The distance between two towns A and B is 360 km . A minibus left town A at $8.15 \mathrm{a} . \mathrm{m}$ and travelled towards B at an average speed of $90 \mathrm{~km} / \mathrm{hr}$. A matatu left town B at $10.35 \mathrm{a} . \mathrm{m}$ on the same day and travelled towards A at an average speed of $110 \mathrm{~km} / \mathrm{hr}$.
a)i)how far from A did they meet?
(4mk)
ii)at what time did the two vehicles meet?
(2mk)
b) A motorist left his home at 10.30a.m on the same day and travelled at an average speed of $100 \mathrm{~km} / \mathrm{hr}$. He arrived at B at the same time as minibus. Calculate the distance from B to his home.

> (4mk)

