FORM FOUR CLUSTER KCSE MODEL6

PHYSICS PAPER 3 QUESTIONS

- 1. You are provided with the following:
 - -An ammeter (0 -2.5A)
 - -A voltmeter (0-5v)
 - -Two size D drY cells
 - -Mounted michrome wire (SWG 28) labeled X 1 metre long
 - -A switch
 - Six connecting wires (four with crocodile clips)
 - -Cell holder

Proceed as follows:-

a) Connect the apparatus provided as shown below:-

Fig 1

- b) With the crocodile clip at C=20cm from A and the switch closed, record the voltmeter reading V in the table below:-
- c) Repeat the procedure in (b) above the values of L=30cm, 45 cm, 60cm, 70cm and 90cm (2mks)

٠							
	Length (L) cm	20	30	45	60	70	00
١	Lengin (L) cm	20	20	10	00	, 0	-
١							
ĺ	p.d (v)						
١							
- 1							

d) Plot a graph of P.d (V) against length L (cm) (5mks)

- e) Determine the slope S of the graph (2mks)
- f) Replace the voltmeter with an ammeter.
- g) Read and record the ammeter reading I1, I2 and I3 for corresponding values of length L1 = 30cm, L2 = 50cm and L3 = 70cmrespectively.

I.	When	$L_1 = 30 cm$	I ₁ — A	1mk
II.		$L_2 = 50cm$	I ₂ — A	1mk
III.		$L_3 = 70 cm$	I ₃ — A	1mk

h) Given that V=SL where V is the p.d across the length AC wire X, S is the slope of the graph in (d) above and L is the length of the wire X Using V=SL determine the p.d V1, V2 and V3 across the lengths AC, L of the wire for lengths L1, L2 and L3 in (g) above.

i.	When $L_1 = 30 \text{cm}$				
	$V_1 =$		(1mk)		
ii.	When L ₂	= 50cm			
	V_2	=	(1mk)		
iii.	When L ₃	= 70 cm			
) Using resistan	V ₃ the values ces R1, R2	= of V1, V2 and V3 and the corresponding I1, I2, and R3 of thebulb.	(1mk) I3, calculate the corresponding		
a)	\mathbf{R}_1		(1mk)		
b)	\mathbb{R}_2		(1mk)		
c)	\mathbb{R}_3		(1mk)		
j) Compl PART 1:) Complete the average of the resistances of the bulb from (I) above (2mks)				

2.

You are provided with the following - A pendulum bob

- -A stop watch
- -1.5m long cotton thread
- -Two small pieces of wood
- A retort stand and clamp

Proceed as follows:-

a) Suspended the pendulum bob from a retort stand such that L = 1.2 m the set up below:-

- b) Displace the bob trough a small angle θ less than 100 and release it to oscillate in a vertical plane.
 c) Determine the time for 20 oscillations
 d) Record the values in table 2 below

- e) Repeat the experiment for different lengths and complete the tablebelow:

Table 2

Length L (m)	Time t for 20 oscillation (s)	Periodic time T (s)	T ² (S ²)
1.2			
1.0			
0.8			
0.6			
0.4			

f) Plot a graph of T2 (y-axis) against L (m) (5mks)

- g) Determine gradient S of the graph. (3mks)
- h) Given that T2= $4\pi 2I/g$ is the equation of the graph. Use the graph to determine the value of acceleration due to gravity, g. (3mks)

PART II

You are provided with the following

- Concave mirror
- Mirror holder
- Metre ruler
- Candle
- Screen

Proceed as follows:-

Repeat these three times.

$$f(1) =$$

$$f(2) =$$

$$f(3) = (1mk)$$

Calculate the average focal length.

$$f(av) = (1mk)$$

b) Place candle light at a distance U=40 cm from the concave mirror. Image I is formed by reflection in the mirror obtained by moving the screen to and from to obtain a sharp image. Measure distance V of the image from the mirror.

 $\label{eq:Fig3} \textbf{Fig 3}$ c) Adjust object distance U = 50 and repeat the procedure to obtain the corresponding value V. Record your values in the table 3 below.

U(cm)	V(cm)	M = v/u
40		
50		
		(2ml-s)

(2mks)

Given that the focal length of the mirror satisfies the equation.

$$f = V \over 1 + M$$
 determine the average.

Value of focal length f (2mks)

