FDRM FDUR CLUSTER KCSE MODELG
 PHYSICS PAPER 3 QUESTIONS

1. You are provided with the following:
-An ammeter (0 -2.5A)
-A voltmeter ($0-5 \mathrm{v}$)
-Two size D drY cells
-Mounted michrome wire (SWG 28) labeled X 1 metre long
-A switch

- Six connecting wires (four with crocodile clips)
-Cell holder

Proceed as follows:-
a) Connect the apparatus provided as shown below:-

Fig 1
b) With the crocodile clip at $\mathrm{C}=20 \mathrm{~cm}$ from A and the switch closed, record the voltmeter reading V in the table below:-
c) Repeat the procedure in (b) above the values of $L=30 \mathrm{~cm}, 45 \mathrm{~cm}, 60 \mathrm{~cm}, 70 \mathrm{~cm}$ and 90 cm (2mks)

Length (L) cm	20	30	45	60	70	90
p.d (v)						

d) Plot a graph of P.d (V) against length L (cm) (5mks)

e) Determine the slope S of the graph (2 mks)
f) Replace the voltmeter with an ammeter.
g) Read and record the ammeter reading I1, I2 and I3 for corresponding values of length L1 = $30 \mathrm{~cm}, \mathrm{~L} 2=50 \mathrm{~cm}$ and $\mathrm{L} 3=70 \mathrm{cmrespectively}$.

I. When	$\mathrm{L}_{1}=30 \mathrm{~cm}$	I_{1}	A
II.	$\mathrm{L}_{2}=50 \mathrm{~cm}$	I_{2}	1 mk
III.	$\mathrm{L}_{3}=70 \mathrm{~cm}$	I_{3}	A
A	1 mk		

h) Given that $V=S L$ where V is the p.d across the length $A C$ wire X, S is the slope of the graph in (d) above and L is the length of the wire X Using $V=S L$ determine the p.d V1, V2 and V3 across the lengths $A C$, L of the wire for lengths L1, L2 and L3 in (g) above.
i. When $\mathrm{L}_{1}=30 \mathrm{~cm}$

$$
\begin{equation*}
\mathrm{V}_{1}= \tag{1mk}
\end{equation*}
$$

ii. When $\mathrm{L}_{2}=50 \mathrm{~cm}$

$$
\begin{equation*}
\mathrm{V}_{2} \quad= \tag{1mk}
\end{equation*}
$$

iii. When $\mathrm{L}_{3}=70 \mathrm{~cm}$

$$
\begin{equation*}
\mathrm{V}_{3} \quad= \tag{1mk}
\end{equation*}
$$

i) Using the values of $\mathrm{V} 1, \mathrm{~V} 2$ and V 3 and the corresponding $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$, calculate the corresponding resistances R1, R2 and R3 of thebulb.
a) R_{1}
(1mk)
b) $\quad R_{2}$
(1mk)
c) $\quad R_{3}$
j) Complete the average of the resistances of the bulb from (I) above (2mks)
2. PART 1:

You are provided with the following

- A pendulum bob
-A stop watch
-1.5 m long cotton thread
-Two small pieces of wood
- A retort stand and clamp

Proceed as follows:-
a) Suspended the pendulum bob from a retort stand such that $L=1.2 \mathrm{~m}$ the set up below:-

b) Displace the bob trough a small angle θ less than 100 and release it to oscillate in a vertical plane.
c) Determine the time for 20 oscillations
d) Record the values in table 2 below
e) Repeat the experiment for different lengths and complete the tablebelow:

Table 2

Length L (m)	Time t for 20 oscillation (s)	Periodic time T (s)	$\mathrm{T}^{2}\left(\mathrm{~S}^{2}\right)$
1.2			
1.0			
0.8			
0.6			
0.4			

f) Plot a graph of T2 (y-axis) against L (m) (5mks)

g) Determine gradient S of the graph. (3mks)
h) Given that $T 2=4 \pi 2 l / g$ is the equation of the graph. Use the graph to determine the value of acceleration due to gravity, g. (3mks)

PART II

You are provided with the following

- Concave mirror
- Mirror holder
- Metre ruler
- Candle

- Screen

Proceed as follows:-
a) Determine the focal length of the mirror by focusing of a distant object on the screen and measure the length between the mirror and screen.

Repeat these three times.
$f(1)=$
$f(2)=$
$f(3)=(1 \mathrm{mk})$
Calculate the average focal length.
$f(a v)=(1 m k)$
b) Place candle light at a distance $U=40 \mathrm{~cm}$ from the concave mirror. Image I is formed by reflection in the mirror obtained by moving the screen to and from to obtain a sharp image. Measure distance V of the image from the mirror.

Fig 3
c) Adjust object distance $\mathrm{U}=50$ and repeat the procedure to obtain the corresponding value V . Record your values in the table 3below.

$\mathrm{U}(\mathrm{cm})$	$\mathrm{V}(\mathrm{cm})$	$\mathrm{M}=\mathrm{v} / \mathrm{u}$
40		
50		

(2mks)
Given that the focal length of the mirror satisfies the equation.

$$
\mathrm{f} \quad=\underline{\mathrm{V}}
$$

$$
1+\mathrm{M} \quad \text { determine the average. }
$$

Value of focal length $f(2 m k s)$

