KCSE CLUSTER TESTS 11

Physics Paper 3

1.

You are provided with the following apparatus:
Converging lens
\checkmark A suitable lens holder.
\checkmark A candle.
\checkmark A mounted white screen
\checkmark A metre rule

Procedure as follows:

a) Arrange the apparatus as shown in the figure 1(a) below such that the candle flame and the centre of the lens lie in a straight line. Set the distance $u=22.5 \mathrm{~cm}$

Figure 1(a)
b) Adjust the position of the screen until a sharp image of the object is just observed on it.
c) Measure and record the distance V in Table 1.

v	22.5	25.0	32.5	35.0	40.0	45.0
V cm						

d) Repeat the experiment for the other values of v and record your results in the table.
e) On the grid, plot a graph of V (y -axis) against y -Draw the best fit curve.
f) Draw a line to bisect the origin $(0,0)$ to meet the curve at a point c .
i) Drop a perpendicular CX from C to the -U - axis. Record the distance OX from the origin to point X.
$\mathrm{OX}=$.
(cm)
ii) Drop a perpendicular CY from C to the V axis. Record distance OY . OY (cm)
g) Given that the focal length -f - of the lens used $=\frac{0 x+0 y}{4}$ find the value of f correct your answer to 2 significant figures. (2s.f)
h) Set up the apparatus as shown in figure below.

Far distant object

i) Using a far distant object outside the room, adjust the screen until a sharp image is observed in the screen, Record the distance - d - between the lens and the screen. $d=$ \qquad (cm) (1mark)
ii) What does - d-represents? (1mark)
iii) Given that the average focal length $f_{a v}$ is given by $f_{a v}=\frac{f+d}{2}$, determine $f_{a v} \cdot 2$ marks)

20 marks
2.

You are provided with the following apparatus:-

- 100 cm nichrome wire mounted on a metre rule labelled MN.

Compiled \& distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Tel:+254202319748
E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

- An ammeter.
- A voltmeter.
- Three dry cells.
- Cell holder.
- A switch.
- Eight connecting wires(at least 4 with crocodile clips at the end)
- A torch bulb fixed into a lamp holder.

Procedure

a) Connect the apparatus provided as shown in the circuit below.

b) Place the sliding contact at $\mathrm{C}, 25 \mathrm{~cm}$ from M , and then close the switch. Take the ammeter and the voltmeter readings.

Length L (cm)	I (A)	Pd(V)	$\mathrm{I}(\mathrm{mA})$	Pd(mV)	Log I	Log V
5						
25						
40						
60						
70						
90						

(8marks)
c) Repeat the above experiment by placing the sliding contact C at $5 \mathrm{~cm}, 40 \mathrm{~cm}, 60 \mathrm{~cm}, 70 \mathrm{~cm}$ and 90 cm . Record your readings and complete the table below.
d) Find logarithms of mA and mV i.e milliAmperes and milli volts respectively.
e) i) Plot a graph of $\log \mathrm{I}(\mathrm{y}$-axis) against $\log \mathrm{V}$.
ii) Determine the slope of the graph.
f) Given the relation
$\mathrm{I}=\mathrm{K}^{\mathrm{Vn}}$
Using your graph determine the values of K and n .

20 marks

