ALLIANCE GIRLS HIGH SCHOOL MOCK 2017 CHEMISTRY PAPER 1

1. The diagram below represent part of the set up used to prepare and collect gas T.

- (a) Name two reagents that reacted to produce both carbon (IV) oxide and carbon (II) oxide. (1mk)
- (b) Write an equation for the reaction which takes place in the bottles.
- (c) Give a reason why carbon (II) oxide is not easily detected. (1mk)

(1mk)

2. The set up below was used to prepare hydrogen gas.

Complete the diagram to show how a <u>dry</u> sample of hydrogen gas can be collected. (3mkg

3. When 31.2g of hydrated. Aluminium oxide ($Al_2O_3XH_2O$) was heated to a constant mass of 20.6g of Aluminium oxide (Al_2O_3) was obtained. Determine the value of x in hydrated oxide. (Al=27.0, O=16.0, H=1.0)

(3MKS)

4.Study the set up below and answer the questions that flows

(a)Label the cathode and anode on the diagram

(2mks)

(b)State and explain the observations that would be made at the electrodes when the circuit is completed

Statement

(3 mks)

Explanation

		¢			
5.Carbon (II) oxide	gas was ignited at the	end of a genera	ator as below.	Flame	· K
			. //		
Dry carbon(II)o	xide				
(a) Write chemi	ical equation for the r	eaction taking	place at flame K.		(1mk)
(4) 11100 0110				r 1	
					d Evnlain
(b)When trying to p	ut off an oil fire, wate	er is not used; h	owever carbon (iv) oxide is use	(2mks)
	*				
6. 200 cm ³ of CO at the original temp	nd 200 cm ³ of O ₂ are perature and pressure.	mixed and exp Calculate the o	loded in a steel to	ank. The gases ne residual gase	were cooled to
			,		
					•
			.		
				•	
7 (a) Define the t	erm molar heat of for	rmation?			. (1.,
• .			·		
•			٠		. (1.
(b) State the He	ess's law		a		•
(c)Write the eq	uation for the formati	ion of (C4H10) f	rom its elements	i	Ċ
(4)					
•					e'
				• ,	
	•	*		•	

8. Use the information given below to answer the questions that follow:-

$$\Delta H_{c}^{\Theta}$$
 (Graphite) = -396Kjmol⁻¹
 ΔH_{c}^{Θ} (hydrogen) = -288Kjmol⁻¹
 ΔH_{c}^{Θ} (C₄H₁₀) = -2877Kjmol⁻¹

Using an energy level diagram, determine the heat of formation of butane (C₄H₁₀).

(2mks)

 The table below shows the tests carried out on a sample of water and the results obtained.

	Tests	Downle
I	Addition of sodium hydroxide solution	Results
	L	White precipitate which dissolves in excess
II	Addition of excess addedus ammonia	Colourless solution obtained
III	Addition of dilute hydrochloric acid	White precipitate
	and barium chloride	

a) Identify the anion present in the water

(1 mk)

b) Write an ionic equation for the reaction in III

(1 mk)

c) Write the formula of the complex ion formed in II

(1 mk)

10, Describe how a solid sample of the double salt, ammonium iron(II) sulphate, can be prepared using the following reagents; Aqueous ammonia, sulphuric(VI) acid and iron metal. (3 marks)

- 11.A solution of chlorine in Tetracloromethane turns colourless when propene gas is bubbled through it
 (a) Name the type of reaction that takes place
 (1 mk)
 - (b) Write an equation for the above reaction

(1 mk)

12...When excess dilute hydrochloric acid was added to sodium sulphite, 960cm³ of sulphur (IV) Oxide gas was produced. Calculate the mass of sodium sulphite that was used.

(Molar mass of sodium sulphite = 126g and molar gas volume = 24,000cm³)

(3 mkg)

13. Study the diagram below and use it to answer the questions that follow.

(a)Name the substances A	(2mks)
В	
(b) Write an equation for the reaction between A and B.	(1mk)
14. (a) An organic compound P contains 64.9% carbon, 13.5% hydrogen and 21.69 relative formula mass of P is 74. Given that C=12.0, H=1.0, O=16.0	% oxygen. The
(i) Determine the empirical formula of P.	(3 marks)
**	•
(ii) Determine the molecular formula of P.	(1 mk)
15. Distinguish between a strong and weak acid. Give an example of each	(3 Marks)
16. When a metal oxide of element "W" reacts with hydrogen, the equation for the reaction $WO_{3(s)} + 3H_{2(g)} \rightarrow W_{(s)} + 3H_2O_{(l)}$	ction is:
(a) Compare the reactivity of element "W" with hydrogen gas.	(1mk)

(b)Give one commercial use of Hydrogen gas.

(1mk)

17. In the equation below, identify the reagent that acts as a base for forward reaction. Give a reason (2 marks)

 $H_2O_{2 (aq)} + H_2O_{(l)} = H_3O^+_{(aq)} + HO_{2 (aq)}$

18.Calculate the relative formula mass of gas A given that the time taken for equal volumes of oxygen to diffuse through the same hole is 20 seconds and 24 seconds respectively (O=16.0) (2 marks)

19.Below is a part of radioactive decay series which start with uranium 238. Study it and answer the following questions.

(a)Identify radiations X and Y

X

(1mk

Y

(1m)

(o)The above identified radiations are passed thro	ough an electric field.	Complete the	diagram to	clearly
show how they are affected by electric field.				(2mks)

-ve

Radiation X+Y

+ve

20. The diagram below shows a Bunsen burner when in use.

Name the regions labelled C and D.

(2marks)

21(a). The following two tests were carried out on chlorine which was bubbled in water contained in two test tubes. A piece of blue flower was dropped into the first test tube. Using equations explain how chlorine bleached the flower.

(2 mks)

(b) The second test tube was corked and exposed to sunlight. At contain a gas that rekindled a glowing splint. Write an equagas.		ich produced the
© What is the physical identification test for chlorine gas?.		(1mk)
	r	•
22.A sealed glass tube containing air at s.t.p was immersed in we no increase in the volume of the glass tube due to the expans the inside tube. (standard pressure = 760mmHg,)		
		•
	÷	
23. The reaction of propane with chlorine gas gave a compound (a) What condition is necessary for the above reaction to tall		(1 mk
		,
(b) Draw a structured formula of compound C ₃ H ₇ Cl		(1mk)
24. Classify the following processes as either chemical or physic	al.	(3 marks
Process	Type of change	
(a) heating copper(II) sulphate crystals		-
(b) Obtaining kerosene crude oil (c) souring of milk		1
		_
25.Calculate the concentration of Sulphuric acid in moles per lit neutralized by 20cm ³ of one molar potassium hydroxide.	re if 15cm of the acid is	completely (3 marks)

26. 100g of radioactive substance was reduced to 12.5 g with substance	hin 15.6 years. Calculate the half life of the (2mks)
	₽ f
•	
27. Calculate the mass of nitrogen (IV)oxide gas that would on hydrogen gas at same temperature and pressure. (H=1.0, N=1)	occupy the same volume as 10g of 14.0, O=16.0) (2 marks)
20 () ()	•
28.(a) Give the formula of two cations whose salts are all so	bluble. (2mk)
The second secon	
(b) Give one anion whose salts are all soluble.	(1mk)

THIS IS THE LAST PRINTED PAGE