KCSE TRIAL 2021 PHYSICS PAPER 2

SECTION A (25 MARKS)

1.	a) Distinguish between a real and virtual image	(1 mark)
	b) Complete the diagram below to show how the object is viewed	(2 marks)
	Lunium	
2.	A concave mirror has a focal length of 8cm. A real object of length 2cm is place the mirror. Calculate the distance of the image from the mirror. If the length	
	formed is 4cm.	(3 marks)
3.	a) Explain what is meant by soft iron being a soft magnetic material.	(1 mark)
	b) How do you can make the bell ring only once and not continuously	(1 mark)
	c) Explain (2 mar	ks)

4.	Find the effective capacitance of the following circuit	(2 marks)
	2 μf 25 μf 3 μf	
5.	State one factor that affects the speed of sound through a solid	(1 mark)
6.	The following is a part of a radio – active series.	
Ide	$ \begin{array}{c c} & 210 \\ 83 & x \\ \end{array} $ rentify the radiation r, find the values of c and d.	(3 marks)
	A hair drier is rated 2000W, 240V. Determine its resistance.	(2 marks)
8.	The refractive index of glass is $\frac{3}{2}$ and that of water is $\frac{4}{3}$. Calculate the refiglass with respect to water.	ractive index of (2 marks)

9. 5	State two advantages of an Alkaline battery over a Lead Acid accum	nulator (2 marks)
	n an X-Ray machine, give the reasoning behind the following a) Using a concave shaped cathode	(1 mark)
		(1 mark)
•••••		
 ł	b) Evacuating the X-Ray Machine	(1 mark)
	y Evacuating the X hay Machine	(1 mark)
•••••		
SEC	CTION B (55 MARKS)	
	a) Fig 5 shows plane waves in a ripple tank. The water is deeper in s	section A & C than
	in section B.	
	.	
	A B C	•
	De	eep
	Deep	•
	Fig. 5 Shallow	
	Draw the waves after passing section B.	(2 marks)
b)	State two conditions necessary for production of interference.	(2 marks)

c)	A tube of length 36cm is closed at one end. It is resonance with a tuning 256Hz sounded above the open end. Given that the velocity of sound in	
	determine.	an 18 334m/s
i)	The wavelength of the wave generated by the tuning fork	(2 marks)
ii)	The end correction of the tube	(2 marks)
12	2. Figure 10 below shows the main features of cathode ray oscilloscope (Control of the control o	(2 marks)
	(ii)State the function of B and briefly outline how it works.	(2 marks)
	(iii) State two function of the anodes.	(2 marks)

Determine (i) The park voltage of the generator.	
	(2 marks)
(ii) The frequency of the voltage.	(2 marks)

(c) Give one example of a semi-conductor and one example for a conductor.

(b) Distinguish between a p-type and n-type semi-conductors

(2 marks)

(2 marks)

(d) What is meant by donor impurity in a semiconductor?	(1 mark)
(e) Why is a capacitor included in a bridge circuit?	(1 mark)
(f) Sketch the graph for when a load is connected to a CRO, in a bridge capacitor has been used.	e circuit where a (3 marks)
14. a) i) What is meant by photoelectric effect?	(1 mark)
ii) (I) You are provided with highly polished Zinc Plate, electroscope, sour rays, and materials for charging the electroscope. Draw a setup of the show how electric effect may be demonstrated in a laboratory.	

(II)	Explain how the set up can be used to determine the nature of photoemission		
	taking place.	(3 marks)	
••••••			
••••••			
<i>a</i> > <i>c</i> >		1	
(b) (1)	State two factors that affect photo- electric emission. (2	marks)	
		•••••	

(ii) When a certain photoelectric surface is illuminated with light of different frequencies, the corresponding stopping potential was measured.

The graph below shows how frequency (f) varies with stopping potentially, Vs.

Given that eVs = hf- ϕ , determine the values of h and ϕ from the graph. (5 marks) (electronic charge = 1.6 x 10⁻¹⁹C)

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | **Mob: 0734579299 E-mail:** infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

15. a) i) State two properties of a wire that make it suitable as a fuse.	
ii) Two fuses of the same length and material may be rated differently. What phys determines the rating of such fuses?	sical property (1 mark)
b) Long distance power transmission is done at very high voltages. Explain how t and why it is necessary to transmit at high voltage	this is achieved (3 marks)
c) In most 3 – pin plugs the earth pin is normally longer/ explain why.	

16. a) Sta	ate Lenz's law of electromagnetic induction.	(1 mark)
circu heate	ansformer with 2000 turns in the primary circuit and 150 to the secondary circuit, it produced heat a ming 100% efficiency, determine the;	e. It is found that when a
(i)	Voltage in the secondary circuit.	(2 marks)
(ii)	Current in the primary circuit.	(2 marks)
(iii)	Current in the secondary circuit.	(1 mark)
(iv)	State the type of transformer represented above.	(1 mark)