KCSE PREDICTIONS 2020

PHYSICS PAPER 1

SECTION A (25 MARKS)

Answer <u>all</u> the questions in this section in the spaces provided.

1. Figure 1. shows a micrometer screw gauge being used to measure the diameter of a ball bearing.

If the instrument has a negative zero error of 0.01mm, record the actual diameter (1mk)	of the ball bearing
2. Figure 2. shows drops of mercury and water on a glass surface,	
Mercury drop Water drop Glass	
Explain the difference in the shapes of the drops.	(2mks)
3. Explain why fish can survive under water when the surface is already frozen.	(1 mk)

4. Figure 3 shows three identical springs each of spring constant 4.5N/m and negligible weight are used to support a load as shown. Determine the total extension of the system. (2mks)

5. Figure 4 shows a uniform rod **AB** of negligible weight pivoted at **A**.

If the system is in equilibrium, determine the weight W shown in the diagram. (3mks)

6.	A ball is thrown from the top of a cliff 20m high with a horizontal velocity of 10ms ⁻¹ . Calculate the distance from the foot of the cliff to where the ball strikes the ground. (3 marks)
	height of mercury column in a barometer density 13600kg/m^{-3} , at a place is 64cm. What would be the height of a column of paraffin in barometer at the same place. (Density of paraffin = $8.0 \times 10^2 \text{ kg/m}^3$). (3mks)
8. Ex	plain one advantage of mercury over alcohol as a thermometric liquid. (1mk)
9.A bo	ody of mass \mathbf{M} is allowed to slide down an inclined plane. State \mathbf{two} factors that affect its final velocity at the bottom of the inclined plane. (2mks)

10. A car of mass 1 tone moving at a velocity of 108km/hr is brought to rest in 5 second the retarding force.(2mks)	nds. Calculate
11. Explain why a gas cylinder in a house containing cooking fire explodes.(2mks)	
12.Oil is leaking from a car as it travels along a straight road. One drop falls on the grafifty seconds. Figure 5 below shows the pattern of the drop on the ground.	ound every
1 2 3 4	
(i) Describe the motion of the car.	(1mk)
(ii) Determine the acceleration of the car if the distance between drop 1 & 2 is 20 met distance between drop 3 & 4 is 40 meters	ers and the (2mks)

SECTION B - 55 MARKS

Answer <u>all</u> questions in this section in the spaces provided.

13. a) State Pressure Law.	(2mk)
b) Figure 6 shows a set up that may be used to verify Pressure law.	
Stirer	
ThermometerGlass flask	
Hot waterDry air	
i) State the measurements that may be taken in the experiment.	(2mks)
ii) Explain how the measurement in (i) above may be used to verify Pressure law	

(a) Define specific latent heat of fusion of a substance. (1mk)
(b) Figure 7 below shows a block of ice with two heavy weights hanging such that the copper wire connecting them passes over the block.
Vooden support
weights
(i) It is observed that the wire gradually cuts through the ice block, but leaves it as one piece. Explain (3mks)
(ii) What change would be observed if the copper wire used in the experiment was placed by a cotton thread. (1mk)

20°C mix	A block of ice of mass 40g at 0°C is placed in a calorimet C. The heat absorbed by the calorimeter is negligible. The sture after all the ice has melted is T. (specific latent heat cific heat capacity of water=4200JKg ⁻¹ k ⁻¹)	e final temperature of the
(i) I (2m	Derive an expression for the heat gained by the ice as it maks)	elts to water at temperature T .
	Derive an expression for the heat lost by the water.	(1mk)
) Determine the value of T . (2mks)	
(d) Sta	ate two differences between boiling and evaporation.	(2mks)
5.(a) State	e the law of floatation.	(1mk)

beaker if filled with water.	
(i) Indicate and label on the diagram the forces acting on the cork. (ii) Write an expression showing the relationship between the forces. (1mk)	(3mks)
(c) A solid displaces 8.5cm ³ of liquid when floating on a certain liquid and 11.5 submerged in the liquid. The density of the solid if 0.8g/cm ³ . determine: (i) Up thrust on the solid when floating.	5 cm ³ when fully (3mks)
(ii) Density of the liquid.	(3mks)
16. (a) Name a device that is used to convert sound energy to electrical ene	rgy. (1mk)

(b) Figure 8 shows a piece of cork held with a light thread attached to the bottom of a beaker. The

(b) Define the term efficiency of a machine.	(1mk)
(c) A pulley system having a velocity ratio of 4 is used to ra 0.6m at a constant speed using an effort of 60N in a time of	
(i) Calculate the efficiency of the system.	(2mks)
(ii) How far does the effort end move in order to raise the lo	ad by 0.6m. (2mks)
(iii) Determine the power developed by the effort. (2 mks)	
17. (a) Define the following terms:	
(i) Instantaneous velocity.(1mk)	
(ii) Uniform acceleration (1mk)	

velocity of 25m/s in the next 20s. this velocity is maintained for the next 300s. the car is then brought to rest in 30s with uniform deceleration.
(i) Sketch a velocity-time graph for this journey.(2mks)
.From the graph determine;
.From the graph determine,
(ii) The acceleration while the velocity is changing from 15m/s to 25m/s.(2mks)
(iii) The total distance traveled from the time the car reached maximum velocity of the car during this period.(2mks)
(c) A ball is thrown horizontally at V=8m/s from a tower. It reaches the ground after 4s. Find:(i) The horizontal distance d it travels before hitting the ground.(1mk)
(ii) The height of the tower (2mks)

(iii)	The '	velo	city	on ir	npac	ct wi	ith tl	he g	rou	nd.(2mk	(s)						